• 제목/요약/키워드: uniform scanning

검색결과 361건 처리시간 0.029초

반복변형된 동 및 동알루미늄 단결정 표면형상의 나노-스케일 관찰 (Nano-Scale Surface Observation of Cyclically Deformed Copper and Cu-Al Single Crystals)

  • 최성종;이권용
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제29회 춘계학술대회
    • /
    • pp.67-72
    • /
    • 1999
  • Scanning probe Microscope(SPM) such as Scanning Tunneling Microscope(STM) and Atomic Force Microscope(AFM) was shown to be the powerful tool for nano-scale characterization of material surfaces Using this technique, surface morphology of the cyclically deformed Cu or Cu-Al single crystal was observed. The surface became proportionately rough as the number of cycles increased, but after some number of cycles no further change was observed. Slip steps with the heights of 100 to 200 nm and the widths of 1000 to 2000 nm were prevailing at the stage. The slipped distance of one slip system at the surface was not uniform. and formation of the extrusions or intrusions was assumed to occur such place. By comparing the morphological change caused by crystallographic orientation, strain amplitude, number of cycles or stacking fault energy, some interesting results which help to clarify the basic mechanism of fatigue damage were obtained. Furthermore, applicability of the scanning tunneling microscopy to fatigue damage is discussed.

  • PDF

The Scanning Laser Source Technique for Detection of Surface-Breaking and Subsurface Defect

  • Sohn, Young-Hoon;Krishnaswamy, Sridhar
    • 비파괴검사학회지
    • /
    • 제27권3호
    • /
    • pp.246-254
    • /
    • 2007
  • The scanning laser source (SLS) technique is a promising new laser ultrasonic tool for the detection of small surface-breaking defects. The SLS approach is based on monitoring the changes in laser-generated ultrasound as a laser source is scanned over a defect. Changes in amplitude and frequency content are observed for ultrasound generated by the laser over uniform and defective areas. The SLS technique uses a point or a short line-focused high-power laser beam which is swept across the test specimen surface and passes over surface-breaking or subsurface flaws. The ultrasonic signal that arrives at the Rayleigh wave speed is monitored as the SLS is scanned. It is found that the amplitude and frequency of the measured ultrasonic signal have specific variations when the laser source approaches, passes over and moves behind the defect. In this paper, the setup for SLS experiments with full B-scan capability is described and SLS signatures from small surface-breaking and subsurface flaws are discussed using a point or short line focused laser source.

Geant4 몬테카를로 코드를 이용한 양성자 치료기 노즐의 전산모사 (A Monte Carlo Simulation Study of a Therapeutic Proton Beam Delivery System Using the Geant4 Code)

  • 신정욱;심현하;곽정원;김동욱;박성용;조관호;이세병
    • 한국의학물리학회지:의학물리
    • /
    • 제18권4호
    • /
    • pp.226-232
    • /
    • 2007
  • 국립암센터에 설치된 양성자 치료기의 빔 전달 시스템에 대하여 Geant4 코드를 이용하여 몬테카를로 전산모사를 수행하였고, 선량검증 도구로써의 이용 가능성에 대하여 연구하였다. 몬테카를로 기술을 기반으로 하는 선량계산은 물질내의 선량분포를 이해하는 데 가장 정확한 방법으로 알려져 있다 외부조사 방사선치료에 있어서 이 방법의 장점을 극대화 하기 위해서는, 빔이 지나가는 곳에 놓여진 노즐 구성요소들의 정확한 모델링과 더불어 초기빔 특성파악은 무엇보다 중요하다. 국립암센터에 설치된 양성자 치료기는 총 3가지 형태-double/single scattering, uniform scanning and pencil-beam scanning-로 치료빔을 조사할 수 있으며, 본 연구진은 Geant4.8.2 코드를 기반으로 double/single scattering 모드를 구성하는 모든 노즐구성요소들에 대하여 모델링 하였다. 특정 치료감이에 대하여 실험치와 일치하는 전산모사의 결과를 얻었다 본 기관에 설치된 양성자치료기에 대한 몬테카를로 전산모사에 대한 기반을 성공적으로 구축하였고, 치료빔에 대하여 정밀한 선량측정에 이용할 수 있다. 치료빔의 전 에너지 영역에 걸쳐 추가적인 커미셔닝을 수행할 것이다.

  • PDF

Electrically conductive nano adhesive bonding: Futuristic approach for satellites and electromagnetic interference shielding

  • Ganesh, M. Gokul;Lavenya, K.;Kirubashini, K.A.;Ajeesh, G.;Bhowmik, Shantanu;Epaarachchi, Jayantha Ananda;Yuan, Xiaowen
    • Advances in aircraft and spacecraft science
    • /
    • 제4권6호
    • /
    • pp.729-744
    • /
    • 2017
  • This investigation highlights rationale of electrically conductive nano adhesives for its essential application for Electromagnetic Interference (EMI) Shielding in satellites and Lightning Strike Protection in aircrafts. Carbon Nano Fibres (CNF) were functionalized by electroless process using Tollen's reagent and by Plasma Enhanced Chemical Vapour Deposition (PECVD) process by depositing silver on CNF. Different weight percentage of CNF and silver coated CNF were reinforced into the epoxy resin hardener system. Scanning Electron Microscopy (SEM) micrographs clearly show the presence of CNF in the epoxy matrix, thus giving enough evidence to show that dispersion is uniform. Transmission Electron Microscopy (TEM) studies reveal that there is uniform deposition of silver on CNF resulting in significant improvement in interfacial adhesion with epoxy matrix. There is a considerable increase in thermal stability of the conductive nano adhesive demonstrated by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Four probe conductivity meters clearly shows a substantial increase in the electrical conductivity of silver coated CNF-epoxy composite compared to non-coated CNF-epoxy composite. Tensile test results clearly show that there is a significant increase in the tensile strength of silver coated CNF-composites compared to non-coated CNF-epoxy composites. Consequently, this technology is highly desirable for satellites and EMI Shielding and will open a new dimension in space research.

Dynamics of Nanopore on the Apex of the Pyramid

  • Choi, Seong-Soo;Yamaguchi, Tokuro;Park, Myoung-Jin;Kim, Sung-In;Kim, Kyung-Jin;Kim, Kun-Ho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.187-187
    • /
    • 2012
  • In this report, the plasmonic nanopores of less than 5 nm diameter were fabricated on the apex of the pyramidal cavity array. The metallic pyramidal pit cavity can also utilized as the plasmonic bioreactor, and the fabricated Au or Al metallic nanopore can provide the controllable translocation speed down using the plasmonic optical force. Initially, the SiO2 nanopore on the pyramidal pit cavity were fabricated using conventional microfabrication techniques. Then, the metallic thin film was sputter-deposited, followed by surface modification of the nanometer thick membrane using FESEM, TEM and EPMA. The huge electron intensity of FESEM with ~microsecond scan speed can provide the rapid solid phase surface transformation. However, the moderate electron beam intensity from the normal TEM without high speed scanning can only provide the liquid phase surface modification. After metal deposition, the 100 nm diameter aperture using FIB beam drilling was obtained in order to obtain the uniform nano-aperture. Then, the nanometer size aperture was reduced down to ~50 nm using electron beam surface modification using high speed scanning FESEM. The followed EPMA electron beam exposure without high speed scanning presents the reduction of the nanosize aperture down to 10 nm. During these processes, the widening or the shrinking of the nanometer pore was observed depending upon the electron beam intensity. Finally, using 200 keV TEM, the diameter of the nanopore was successively down from 10 nm down to 1.5 nm.

  • PDF

The Effects of a Er:YAG Laser on Machined, Sand-Blasted and Acid-Etched, and Resorbable Blast Media Titanium Surfaces Using Confocal Microscopy and Scanning Electron Microscopy

  • Park, Jun-Beom;Kim, Do-Young;Ko, Youngkyung
    • Journal of Korean Dental Science
    • /
    • 제9권1호
    • /
    • pp.19-27
    • /
    • 2016
  • Purpose: Laser treatment has become a popular method in implant dentistry, and lasers have been used for the decontamination of implant surfaces when treating peri-implantitis. This study was performed to evaluate the effects of an Erbium-doped:Yttrium-Aluminum-Garnet (Er:YAG) laser with different settings on machined (MA), sand-blasted and acid-etched (SA), and resorbable blast media (RBM) titanium surfaces using scanning electron microscopy and confocal microscopy. Materials and Methods: Four MA, four SA, and four RBM discs were either irradiated at 40 mJ/20 Hz, 90 mJ/20 Hz, or 40 mJ/25 Hz for 2 minutes. The specimens were evaluated with scanning electron microscopy and confocal microscopy. Result: The untreated MA surface demonstrated uniform roughness with circumferential machining marks, and depressions were observed after laser treatment. The untreated SA surface demonstrated a rough surface with sharp spikes and deep pits, and the laser produced noticeable changes on the SA titanium surfaces with melting and fusion. The untreated RBM surface demonstrated a rough surface with irregular indentation, and treatment with the laser produced changes on the RBM titanium surfaces. The Er:YAG laser produced significant changes on the roughness parameters, including arithmetic mean height of the surface (Sa) and maximum height of the surface (Sz), of the MA and SA surfaces. However, the Er:YAG laser did not produce notable changes on the roughness parameters, such as Sa and Sz, of the RBM surfaces. Conclusion: This study evaluated the effects of an Er:YAG laser on MA, SA, and RBM titanium discs using confocal microscopy and scanning electron microscopy. Treatment with the laser produced significant changes in the roughness of MA and SA surfaces, but the roughness parameters of the RBM discs were not significantly changed. Further research is needed to evaluate the efficiency of the Er:YAG laser in removing the contaminants, adhering bacteria, and the effects of treatment on cellular attachment, proliferation, and differentiation.

드론 촬영 기반 사진 스캐닝 기술을 활용한 3D 모델링데이터 생성방법에 관한 연구 (The 3D Modeling Data Production Method Using Drones Photographic Scanning Technology)

  • 이준상;이임건
    • 한국정보통신학회논문지
    • /
    • 제22권6호
    • /
    • pp.874-880
    • /
    • 2018
  • 3D 모델링은 건축, 기계, 제품 및 영화영상의 다양한 콘텐츠 제작 등에 폭넓게 활용되고 있으며 첨단 제작기술들이 적용되고 있다. 모델링은 시간이 많이 소요되는 작업으로 이러한 단점을 보완하기 위해서 최근 3D스캐닝 기술을 적용하여 제작기간을 단축시키려는 시도가 활발하다. 소형 오브젝트에 대한 3D스캐닝은 레이저나 광학을 이용하여 직접 데이터를 얻지만 대형의 건물이나 조형물은 고가의 장비가 필요하므로 직접적이 데이터 취득이 힘들다. 본 연구에서는 포토메트리를 이용하여 대형 오브젝트에 대한 3차원 모델링 데이터를 획득한다. 영상 데이터를 획득하기위해 드론을 이용하였으며 조형물과 드론의 일정한 간격유지와 비행 동선에 대한 측정방법을 제시하였다. 또한 획득된 3차원 점군 데이터를 애니메이션에 활용할 수 있는 제작환경과 렌더링 된 애니메이션 결과물을 제시하여 다양한 환경에서 제작할 수 있는 방안을 모색하였다.

One Pot Synthesis and Characterization of Alginate Stabilized Semiconductor Nanoparticles

  • Sundarrajan, Parani;Eswaran, Prabakaran;Marimuthu, Alexander;Subhadra, Lakshmi Baddireddi;Kannaiyan, Pandian
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권10호
    • /
    • pp.3218-3224
    • /
    • 2012
  • Uniform and well dispersed metal sulfide semiconductor nanoparticles incorporated into matrices of alginate biopolymer are prepared by using a facile in situ method. The reaction was accomplished by impregnation of alginate with divalent metal ions followed by reaction with thioacetamide. XRD analysis showed that the nanoparticles incorporated in the polymer matrix were of cubic structure with the average particle diameter of 1.8 to 4.8 nm. Field emission scanning electron microscopy and high resolution transmission electron microscopy images indicated that the particles were well dispersed and distributed uniformly in the matrices of alginate polymer. FT-IR spectra confirmed the presence of alginate in the nanocomposite. The crystalline nature and thermal stability of the alginate polymer was found to be influenced by the nature of the divalent metal ions used for the synthesis. The proposed method is considered to be a simple and greener approach for large scale synthesis of uniform sized nanoparticles.

Preparation Method of Plan-View Transmission Electron Microscopy Specimen of the Cu Thin-Film Layer on Silicon Substrate Using the Focused Ion Beam with Gas-Assisted Etch

  • Kim, Ji-Soo;Nam, Sang-Yeol;Choi, Young-Hwan;Park, Ju-Cheol
    • Applied Microscopy
    • /
    • 제45권4호
    • /
    • pp.195-198
    • /
    • 2015
  • Gas-assisted etching (GAE) with focused ion beam (FIB) was applied to prepare plan-view specimens of Cu thin-layer on a silicon substrate for transmission electron microscopy (TEM). GAE using $XeF_2$ gas selectively etched the silicon substrate without volume loss of the Cu thin-layer. The plan-view specimen of the Cu thin film prepared by FIB milling with GAE was observed by scanning electron microscopy and $C_S$-corrected high-resolution TEM to estimate the size and microstructure of the TEM specimen. The GAE with FIB technique overcame various artifacts of conventional FIB milling technique such as bending, shrinking and non-uniform thickness of the TEM specimens. The Cu thin film was uniform in thickness and relatively larger in size despite of the thickness of <200 nm.

Preparation and Characterization of Cellulose Nanofibril/Polyvinyl Alcohol Composite Nanofibers by Electrospinning

  • Park, Byung-Dae;Um, In Chul;Lee, Sun-Young;Dufresne, Alain
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권2호
    • /
    • pp.119-129
    • /
    • 2014
  • This work undertook to prepare nanofibers of cellulose nanofibrils (CNF)/polyvinyl alcohol (PVA) composite by electrospinning, and characterize the electrospun composite nanofibers. Different contents of CNFs isolated from hardwood bleached kraft pulp (HW-BKP) by 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO)-mediated oxidation were suspended in aqueous polyvinyl alcohol (PVA) solution, and then electrospun into CNF/PVA composite nanofibers. The morphology and dimension of CNFs were characterized by transmission electron microscopy (TEM), which revealed that CNFs were fibrillated form with the diameter of about $7.07{\pm}0.99$ nm. Morphology of the electrospun nanofiber observed by field-emission scanning electron microscopy (FE-SEM) showed that uniform CNF/PVA composite nanofibers were manufactured at 1~3% CNF contents while many beads were observed at 5% CNF level. Both the viscosity of CNF/PVA solution and diameter of the electrospun nanofiber decreased with an increase in CNF content. The diameter and its distribution of the electrospun nanofibers helped explain the differences observed in their morphology. These results show that the electrospinning method was successful in preparing uniform CNF/PVA nanofibers, indicating a great potential for manufacturing consistent and reliable cellulose-based nanofibrils for scaffolds in future applications.