• Title/Summary/Keyword: uniform region

Search Result 641, Processing Time 0.035 seconds

Improvement of High Permittivity Pads for Areas with Generally Low Signal Sensitivity at 7T MRI (7T MRI에서 일반적으로 신호 감도가 낮은 영역에 대한 고유전율 패드 개선)

  • Yong-Tae, Kim;Hyeon-Man, Baek
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.761-769
    • /
    • 2022
  • Pads with high dielectric materials have been used in a variety of applications to locally improve the field sensitivity and homogeneity of RF pulses in clinical MRI studies. In this study, we aimed to improve such pads in consideration of the practical problems associated with the application of actual clinical images. A high permittivity pad to increase the attenuated B1 field strength was fabricated and tested in 7T MRI. Sim4Life simulation and experimental results show stronger and relatively uniform B1 near field. In order to improve the image quality in the whole cerebellum, known as a region with low sensitivity, a guide was made to reduce the mechanical change of the pad. In order to improve the wearing comfort, the pad was designed by dividing it into upper and lower parts. The facial pad showed an overall signal increase effect in areas such as the turbinate in the nasal cavity. Signal increase was expected in areas such as the frontal lobe and eyes, but the effect was either insignificant or it was difficult to see the effect in the imaging protocol. In conclusion, this paper showed a cerebellar-optimized pad with an improved nasal signal while maintaining its effectiveness.

Comparison of Heel Effect with Distance and Direction Change (거리와 방향 변화에 따른 힐이팩트 비교)

  • Kim, Hyung-Woo;Seok, Ji-Eun;Kang, Min-Yeong;Jo, Chan-Haeng;Jeon, Min-Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.435-442
    • /
    • 2022
  • The heel effect creates a density difference in the X-ray images because the intensity of the anode and cathode side of the X-ray tube is not equal. The purpose of this study is to evaluate the density difference due to the heel effect by rotating the step wedge by 180 degrees and then changing the distance. After fixing the tube voltage and tube current to 72 kVp and 10 mAs, the forward and reverse directions were taken using a step wedge. At this time, the distance (80 cm ~ 130 cm) was taken at 10 cm intervals, and the density value was measured by setting the region of interest for each step of the step wedge through the M6 program. First, the difference in intensity between the anode and the cathode was confirmed through the radiation exposure test. In addition, when the distance (from 80 cm to 130 cm) was changed, the difference in density between the cathode and the anode decreased as the projection distance increased. As a result, images of uniform density can be obtained as the projection distance increases.

Adsorption Characteristics of Nitrogen in Carbonaceous Micropore Structures with Local Molecular Orientation (국부분자배향의 탄소 미세기공 구조에 대한 질소의 흡착 특성)

  • Seo, Yang Gon
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.249-257
    • /
    • 2022
  • The adsorption equilibria of nitrogen on a region of nanoporous carbonaceous adsorbent with local molecular orientation (LMO) were calculated by grand canonical Monte Carlo simulation at 77.16 K. Regions of LMO of identical size were arranged on a regular lattice with uniform spacing. Microporosity was predominately introduced to the model by removing successive out-of-plane domains from the regions of LMO and tilting pores were generated by tilting the basic structure units. This pore structure is a more realistic model than slit-shaped pores for studying adsorption in nanoporous carbon adsorbents. Their porosities, surface areas, and pore size distributions according to constrained nonlinear optimization were also reported. The adsorption in slit shaped pores was also reported for reference. In the slit shaped pores, a clear hysteresis loop was observed in pores of greater than 5 times the nitrogen molecule size, and in capillary condensation and reverse condensation, evaporation occurred immediately at one pressure. In the LMO pore model, three series of local condensations at the basal slip plane, armchair slip plane and interconnected channel were observed during adsorption at pore sizes greater than about 6 times the nitrogen molecular size. In the hysteresis loop, on the other hand, evaporation occurred at one or two pressures during desorption.

A Study on the Spatial Units Adequacy for the Regional Pricing of Electricity: Based on Electricity Self-sufficiency Rates by Si·Gun·Gu (지역별 차등 전기요금제 적용을 위한 공간 단위 검토: 시·군·구별 전력 자급률을 기준으로)

  • Chung Sup Lee;Kang-Won Lee
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.96-109
    • /
    • 2023
  • Recently, there has been a lot of discussion about the regional pricing of electricity and electricity self-sufficiency. In Korea, power generation facilities are highly ubiquitous and there is an imbalance between electricity production and consumption regions. So it is proposed to charge different price by region, instead of the current nationwide uniform price, and the regional electricity self-sufficiency rate is proposed as a criterion for identifying electricity production and consumption regions. However, many discussions set the spatial unit for measuring electricity self-sufficiency by 17 Si·Do, which needs to be analyzed for its appropriateness. In this study, we analyzed the electricity self-sufficiency rate using 17 provinces and 229 Si·Gun·Gu as the spatial unit. As a result of the analysis, there are 7 and 10 electricity producing and consuming regions at Si·Do level, but 38 and 191 at Si·Gun·Gu level. In addition, although the electricity self-sufficiency rate measurement has the advantage of identifying electricity production and consumption areas in a simple and intuitive way, we points out that it has some problems with the criteria for regional pricing of electricity.

Synthesis and Characteristic Evaluation of Downward Conversion Phosphor for Improving Solar Cell Performance (태양전지 성능향상을 위한 하향변환 형광체의 합성 및 특성평가)

  • Jae-Ho Kim;Ga-Ram Kim;Jin-To Choi;Soo-Jong Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.523-528
    • /
    • 2023
  • The applicability as a material to improve solar cell performance was reviewed by synthesizing a phosphor that emits red wavelengths by a liquid synthesis method using a metal salt aqueous solution and a polymer medium as a starting material. An aqueous solution was prepared using nitrate of metals such as Ca, Zn, Al, and Eu, and a precursor impregnated with starch, a natural polymer, was sintered to synthesize CaZnAlO:Eu phosphor powder. The surface structure and composition analysis of the synthesized CaZnAlO:Eu phosphor powder were analyzed by scanning electron microscope(SEM) and energy-dispersed X-ray spectroscopy(EDS). The crystal structure of CaZnAlO:Eu phosphor particles was analyzed by an X-ray diffraction analyzer (XRD). As a result of measuring the photoluminescence(PL) characteristics of the phosphor, it was confirmed that a red phosphor with a light emitting wavelength of 650-780nm was successfully synthesized. According to SEM and EDS analysis, the synthesized Ca14Zn6Al9.93O35:Eu3+0.07 phosphor powder has a uniform particle size, and Eu ions used as an activator are present. The synthesized CZA:Eu3+ phosphor can be used as a material that can increase the light absorption efficiency of the solar cell by converting ultraviolet or visible light down conversion into a wavelength in the near-infrared region.

Evaluation of superficial dose for Postmastectomy using several treatment techniques (유방전절제술을 시행한 환자에서 치료기법에 따른 피부선량 평가)

  • Song, Yong Min;Choi, Ji Min;Kim, Jin Man;Kwon, Dong Yeol;Kim, Jong Sik;Cho, Hyun Sang;Song, Ki Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.225-232
    • /
    • 2014
  • Purpose : The purpose of this study was to evaluate the surface and superficial dose for patients requiring postmastectomy radiation therapy(PMRT) with different treatment techniques. Materials and Methods : Computed tomography images were acquired for the phantom(I'mRT, IBA) consisting of tissue equivalent material. Hypothetical chestwall and lung were outlined and modified. Five treatment techniques(Wedged Tangential; WT, 4-field IMRT, 7-field IMRT, TOMO DIRECT, TOMO HELICAL) were evaluated using only 6MV photon beam. GafChromic EBT3 film was used for dose measurements at the surface and superficial dose. Surface dose profiles around the phantom were obtained for each treatment technique. For superficial dose measurements, film were used inside the phantom and analyzed superficial region for depth from 1-6mm. Results : TOMO DIRECT showed the highest surface dose by 47~70% of prescribed dose, while 7-field IMRT showed the lowest by 35~46% of prescribed dose. For the WT, 4-field IMRT and 7-field IMRT, superficial dose were measured over 60%, 70%, and 80% for 1mm, 2mm, and 5mm depth, respectively. In case of TOMO DIRECT and TOMO HELICAL, over 75%, 80%, and 90% of prescribed dose was measured, respectively. Surface and superficial dose range were uniform in overall chestwall for the 7-field IMRT and TOMO HELICAL. In contrast, Because of the dose enhancement effect with oblique incidence, The dose was gradually increased toward the obliquely tangential angle for the WT and TOMO DIRECT. Conclusion : For PMRT, TOMO DIRECT and TOMO HELICAL deliver the higher surface and superficial doses than treatment techniques based linear accelerator. It showed adequate dose(over 75% of prescribed dose) at 1mm depth in skin region.

MORPHOLOGY OF THE TERMINAL ARBORS FROM THE MASSETERIC MUSCLE SPINDLE AFFERENTS IN THE TRIGEMINAL MOTOR NUCLEUS (삼차신경 운동핵에서 교근 근방추 구심성 신경섬유 종말지의 미세구조)

  • Lee, Kyung-Woo;Bae, Yong-Chul;Kim, Chin-Soo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.16 no.3
    • /
    • pp.321-347
    • /
    • 1994
  • Muscle spindle afferents from masseter muscle were labelled by the intra-axonal HRP injection and were processed for light microscopic reconstruction. Regions containing terminal arbors scattered in the central portion of the masseteric motor neuron pool (type I a) and those restricted to 2-3 small portion of it (type II) were selected and processed for electronmicroscopic analysis with serial sections. The shape of the labelled boutons was dome or elongated shape. Scalloped or glomerulus shape with peripherial indentation containing pre or postsynaptic neuronal propiles, which is occasionally found in the trigeminal main sensory nucleus and spinal dorsal horn, was not observed. Both type Ia and type II boutons had pale axoplasm and contained clear, spherical vesicles of uniform size(dia : 49-52nm) and occasionally large dense cored vesicles(dia : 87-118nm). The synaptic vesicles were evenly distributed throughout the boutons although there was a slight tendency of vesicles to accumulate at the presynaptic site. The average of short and long diameter(short D. + long D./2) of type I a bouton was smaller than that of type II bouton. All the labelled boutons, which showed prominent postsynaptic density, large synaptic area and multiple synaptic contact, made asymmetrical synaptic contact with postsynaptic neuronal propiles. Most of the type Ia and type II boutons made synaptic contact with only one neuronal propile and boutons which shows synaptic contact or more neuronal propiles was not observed. Most of the type Ia boutons(87.2%) were presynaptic to the soma or proximal dendrite and a few remainder(12.8%) made synaptic contact with dendritic shaft or distal dendrite. In contrast, majority of type II boutons showed synaptic contact with dendritic shaft and remainder with soma or proximal dendrite. In conclusion, terminal boutons which participate in the excitatory monosynaptic jaw jerk reflex made synaptic contact with more proximal region of the neuron, and showed very simple synaptic connection, compared with those from the primary afferenst in the other region of the central nervous system such as spinal dorsal horn and trigeminal main sensory nucleus which assumed to be responsible for the mediating pain, tactile sensation, sensory processing or sensory discrimination.

  • PDF

The Dosimetric Data of 10 MV Linear Accelerator Photon Beam for Total Body Irradiation (전신 방사선조사를 위한 10MV 선형가속기의 선량측정)

  • Ahn Sung Ja;Kang Wee-Saing;Park Seung Jin;Nam Taek Keun;Chung Woong Ki;Nah Byung Sik
    • Radiation Oncology Journal
    • /
    • v.12 no.2
    • /
    • pp.225-232
    • /
    • 1994
  • Purpose : This study was to obtain the basic dosimetric data using the 10 MV X-ray for the total body irradiation. Materials and Methods : A linear accelerator photon beam is planned to be used as a radiation source for total body irradiation (TBI) in Chonnam University Hospital. The planned distance from the target to the midplane of a patient is 360cm and the maximum geometric field size is 144cm x 144cm. Polystyrene phantom sized $30{\times}30{\times}30.2cm^3$ and consisted of several sheets with various thickness, and a parallel plate ionization chamber were used to measure surface dose and percent depth dose (PDD) at 345cm SSD, and dose profiles. To evaluate whether a beam modifier is necessary for TBI, dosimetry in build up region was made first with no modifier and next with an 1cm thick acryl plate 20cm far from the polystyrene phantom surface. For a fixed sourec-chamber distance, output factors were measured for various depth. Results : As any beam modifier was not on the way of radiation of 10MV X-ray, the $d_{max}$ and surface dose was 1.8cm and $61\%$, respectively, for 345cm SSD. When an 1cm thick acryl plate was put 20cm far from polystyrene phantom for the SSD, the $d_{max}$ and surface dose were 0.8cm and $94\%$, respectively. With acryl as a beam spoiler, the PDD at 10cm depth was $78.4\%$ and exit dose was a little higher than expected dose at interface of exit surface. For two-opposing fields for a 30cm phantom thick phantom, the surface dose and maximum dose relative to mid-depth dose in our experiments were $102.5\%$ and $106.3\%$, respectively. The off-axis distance of that point of $95\%$ of beam axis dose were 70cm on principal axis and 80cm on diagonal axis. Conclusion: 1. To increase surface dose for TBI by 10MV X-ray at 360cm SAD, 1cm thick acrylic spoiler was sufficient when distance from phantom surface to spoiler was 20cm. 2. At 345cm SSD, 10MV X-ray beam of full field produced a satisfiable dose uniformity for TBI within $7\%$ in the phantom of 30cm thickness by two-opposing irradiation technique. 3. The uniform dose distribution region was 67cm on principal axis of the beam and 80cm on diagonal axis from beam axis. 4. The output factors at mid-point of various thickness revealed linear relation with depth, and it could be applicable to practical TBI.

  • PDF

Characteristics of Particle Flow and Heat Transfer in Liquid-Particle Swirling Fluidized Beds (액체-입자 Swirling 유동층에서 유동입자 흐름 및 열전달 특성)

  • Son, Sung-Mo;Kang, Suk-Hwan;Kang, Yong;Kim, Sang-Done
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.505-512
    • /
    • 2006
  • Characteristics of particle holdup and heat transfer were investigated in a liquid-particle swirling fluidized bed whose diameter was 0.102 m and 2.5 m in height. Effects of liquid velocity, particle size and swirling liquid ratio($R_s$) on the particle holdup and immersed heater-to-bed overall heat transfer coefficient were examined. The particle holdup increased with increasing particle size and swirling liquid ratio but decreased with increasing liquid velocity.The local particle holdup was relatively high in the region near the heater when the $R_s$ value was 0.1~0.3, but the radial particle holdup was almost uniform when the $R_s$ value was 0.5, whereas, when the $R_s$ value was 0.7, the local particle holdup was relatively low in the region near the heater. The heat transfer characteristics between the immersed heater and the bed was well analyzed by means of phase space portraits and Kolmogorov entropy(K) of the time series of temperature difference fluctuations. The phase space portraits of temperature difference fluctuations became stable and periodic and the value of Kolmogorov entropy tended to decrease with increasing the value of $R_s$ from 0.1 to 0.5. The Kolmogorov entropy exhibited its maximum value with increasing liquid velocity. The value of overall heat transfer coefficient(h) showed its maximum value with the variation of liquid velocity, bed porosity or swirling liquid ratio, but it increased with increasing particle size. The value of K exhibited its maximum at the liquid velocity at which the h value attained its maximum. The particle holdup and overall heat transfer coefficient were well correlated in terms of dimensionless groups of operating variables.

Nonhydrostatic Effects on Convectively Forced Mesoscale Flows (대류가 유도하는 중규모 흐름에 미치는 비정역학 효과)

  • Woo, Sora;Baik, Jong-Jin;Lee, Hyunho;Han, Ji-Young;Seo, Jaemyeong Mango
    • Atmosphere
    • /
    • v.23 no.3
    • /
    • pp.293-305
    • /
    • 2013
  • Nonhydrostatic effects on convectively forced mesoscale flows in two dimensions are numerically investigated using a nondimensional model. An elevated heating that represents convective heating due to deep cumulus convection is specified in a uniform basic flow with constant stability, and numerical experiments are performed with different values of the nonlinearity factor and nonhydrostaticity factor. The simulation result in a linear system is first compared to the analytic solution. The simulated vertical velocity field is very similar to the analytic one, confirming the high accuracy of nondimensional model's solutions. When the nonhydrostaticity factor is small, alternating regions of upward and downward motion above the heating top appear. On the other hand, when the nonhydrostaticity factor is relatively large, alternating updraft and downdraft cells appear downwind of the main updraft region. These features according to the nonhydrostaticity factor appear in both linear and nonlinear flow systems. The location of the maximum vertical velocity in the main updraft region differs depending on the degrees of nonlinearity and nonhydrostaticity. Using the Taylor-Goldstein equation in a linear, steady-state, invscid system, it is analyzed that evanescent waves exist for a given nonhydrostaticity factor. The critical wavelength of an evanescent wave is given by ${\lambda}_c=2{\pi}{\beta}$, where ${\beta}$ is the nonhydrostaticity factor. Waves whose wavelengths are smaller than the critical wavelength become evanescent. The alternating updraft and downdraft cells are formed by the superposition of evanescent waves and horizontally propagating parts of propagating waves. Simulation results show that the horizontal length of the updraft and downdraft cells is the half of the critical wavelength (${\pi}{\beta}$) in a linear flow system and larger than ${\pi}{\beta}$ in a weakly nonlinear flow system.