• Title/Summary/Keyword: uniform exhaust

Search Result 70, Processing Time 0.026 seconds

A Study on the Effective Fire and Smoke Control in Road-Tunnel with Semi-Transverse Ventilation (도로터널 화재시 반횡류식 균일배기 환기방식에서의 최적배연 연구)

  • Jeon, Yong-Han;Yoo, Ji-Oh;Kim, Nam-Jin;Seo, Tae-Boem;Kim, Jong-Yoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.3
    • /
    • pp.186-192
    • /
    • 2009
  • In this study it is intended to review the moving characteristics of smoke by performing visualization for calculation of the optimal smoke exhaust air volume in case a fire occurs in tunnels where transverse ventilation is applied, and to obtain basic data necessary for design of the smoke exhaust systems by deriving optimal smoke exhaust operational conditions under various conditions. As a result of this study, if it was assumed 0 critical velocity in the tunnel, the smoke exhaust air volume was limited within 250 meter in the road-tunnel disaster prevention indicator and the exhaust efficiency was from 55.1% to 95.8% in the result of this study. In case of oversized exhaust ports, the generated smoke is more than the case of uniform exhaust. When the critical velocity in the tunnel is 1.75 m/s and 2.5 m/s, the optimal smoke exhaust air volume has to be more than $173\;m^3/s$, $236\;m^3/s$ for the distance of the moving smoke which can limit the distance to 250 m.

A Study on the Effective Fire and Smoke Control in Road-Tunnel with Semi-Transverse Ventilation (Oversized Exhaust System) (도로터널 화재시 반횡류식 환기방식에서의 최적배연 연구(대배기구 방식))

  • Kim, Jong-Yoon;Jeon, Yong-Han
    • Fire Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.79-84
    • /
    • 2009
  • The smoke control system plays the most important role in securing evacuation environment when a fire occurs in road tunnels. Smoke control methods in road tunnels are classified into two categories which are longitudinal ventilation system and transverse ventilation system. In this study it is intended to review the characteristics of smoke behavior by performing numerical analysis for calculating the optimal smoke exhaust air volume when a fire occurs in tunnels in which transverse ventilation is applied, and for obtaining the basic data required for the design of smoke exhaust systems by deriving optimal smoke exhaust operational conditions for various conditions. As a result of this study, when the critical velocity in the tunnel is 1.75m/s and 2.5m/s, the optimal smoke exhaust air volume has to be more than $173m^3/s$, $236m^3/s$ for the distance of the smoke moving which can limit the distance to 250m. In addition, in case of uniform exhaust the generated smoke is effectively taken away if the two exhaust holes near the fire region are opened at the same time.

Development of Differential Exhaust Flow Controller using One Chip Microcontroller (단일칩 마이크로컨트롤러를 이용한 차압식 유량제어기의 개발)

  • Park, Chan-Won;Kim, Hyun-Sik;Joo, Yong-Kyu
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.89-94
    • /
    • 2002
  • In this paper, a Exhaust Flow Controller (EFC) technology for uniform application of film coater and developer device is introduced that spread and remove photo resister at semiconductor manufacturing process. Because developed EFC device uses differential pressure sensing method as a differential flow meter and embodied smart A/D conversion by using a one chip microprocessor and devised by feedback Servo control, It has shown excellent performance and stability evaluation, as maximum 2000L/min flow, capability of installation to actual semiconductor equipment.

  • PDF

Unsteady heat transfer and thermal stress analysis of a gasoline engine cylinder head (실린더 헤드의 비정상 열전달 및 열응력 해석)

  • 박진무;임영훈;김병탁
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.41-52
    • /
    • 1990
  • In this study are determined the unsteady temperature and thermal stress fields for a domestic 4-cylinder, 4-cycle gasoline engine cylinder head by the three-dimensional finite element method. A representative part of the cylinder head is modelled as a combination of hexahedron isoparametric elements, and the time-dependent temperature and the heat transfer coefficient of the gas are imposed as the thermal boundary conditions for the engine speeds of 500 rpm and 2000 rpm. The obtained results, which are represented graphically, indicate that the amplitudes of temperature fluctuation during a cycle are about 10.deg. C and 3.deg. C respectively on the surface of combustion chamber, and the maximum temperature fields occur at 30.deg. , 10.deg. respectively before the initiation of the exhaust stroke. Thermal stress fields due to non-uniform temperature distributions show that compressive stress is much larger than tensile stress throughout a cycle. It is also found that the compressive stress varies with substantial amplitude between the exhaust port and ignition plug hole, and the high tensile stress with small fluctuation occurs between exhaust port and the adjacent head bolt hole.

  • PDF

A Study on Improvement of Ventilation Efficiency of Multi-Stage Slot Hood (외부식 다단형 슬로트 후드의 효율 향상에 관한 연구)

  • Kim, Hyun Seok;Paik, Nam Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.3 no.2
    • /
    • pp.204-212
    • /
    • 1993
  • This study was conducted to evaluate ventilation efficiency of 4-stage slot hood by variation of slot width, flow rate, hood size and baffle size. The slot velocity, control velocity and plenum velocity were related to slot width and the distance between source of contamination and hood. The results obtained from laboratory experiment for local exhaust ventilation systems were as follows ; 1. When slot widths were constant(equally changed) and the velocity was 6-10 m/s, the slot velocity from 1st slot to 4th slot gradually decreased. As the slot width-to-slot length ratio(WLR) decreased, the slot velocity of each stage increased. But if WLR value was less than 0.04, the slot velocity decreased. 2. When slot velocity exceeded 10 m/s with constant slot widths, the slot velocity of each stage was uniform. 3. When the slot velocity was uniform within 10 m/s and the first slot width was 14-20 mm, the slot width ratio between 1st slot and each of three other slots were 1, 1.25, 1.5 and 3.0, respectively. 4. The slot and plenum velocity were uniform when exhaust flow rate changed from 14 to $19m^3/min$ and there were no hood splitter vanes. 5. When the slot velocity at each stage was uniform, the control velocity at site 30 cm away from hood No.2 increased from 0.15-0.30 to 0.25-0.45 m/s and the control distance from 20 to 30 cm(about 1.5 times).

  • PDF

Numerical Study on the Supply and Exhaust Port Size and Fire Management Method in the Semi-transverse Ventilation System for Road Tunnel (도로터널 반횡류환기시스템에서 급배기 포트개도 및 화재시 운영방안에 관한 수치해석적 연구)

  • Ryu, Ji-Oh;Kim, Jin-Su;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.30 no.2
    • /
    • pp.68-74
    • /
    • 2016
  • In semi-transverse ventilation system applied for road tunnel, adjustment of the port opening ratio is an essential part for uniform airflow rate per unit length over the entire tunnel. However, it has not been considered decently throughout the design process and operating of the tunnel. Therefore, in this study, we developed a program for the calculation of the opening size ratio of supply or exhaust port in transverse ventilation system and carried out the research to present a management plan for the port. In supply duct system, the opening size of the port had a tendency to increase and then decrease later when it gradually becomes closer toward the bulkhead at the beginning of the duct the minimum opening degree is to appeared as 56%. In the exhaust system, port size is the smallest at the beginning of duct as 15%, has shown a tendency to increase towards the bulk head. As results of estimating the air flow rate for 300 m intervals, the exhaust flow rate in the center of tunnel appeared to be extremely low as 8.1% and 12.5% when port size is constant and is adjusted supply type. Thus, even if the normal ventilation efficiency is declines, yet it is highly recommend adjusting the port size in order to obtain a uniform flow rate at fire accidents.

A Study on Reaction Rate of Solid SCR for NOx Reduction of Exhaust Emissions in Diesel Engine (디젤엔진 배출가스 질소산화물 저감을 위한 Solid SCR의 반응률에 관한 연구)

  • Lee, Hoyeol;Yoon, Cheon Seog;Kim, Hongsuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.183-194
    • /
    • 2013
  • Liquid urea based SCR has been used in the market to reduce NOx in the exhaust emission of the diesel engine vehicle. This system has several problems at low temperature, which are freezing below $-12^{\circ}C$, solid deposit formation in the exhaust, and difficulties in dosing system at exhaust temperature below $200^{\circ}C$. Also, it is required complicated exhaust packaging equipment and mixer due to supply uniform ammonia concentration. In order to solve these issues, solid urea, ammonium carbonate, and ammonium carbamate are selected as ammonia sources for the application of solid SCR. In this paper, basic research on reaction rate of three ammonia-transporting materials was performed. TGA (Thermogravimetric Analysis) and DTA (Differential Thermal Analysis) tests for these materials are carried out for various heating conditions. From the results, chemical kinetic parameters such as activation energy and frequency factor are obtained from the Arrhenius plot. Additionally, from test results of DSC (Differential Scanning Calorimeter) for these materials, chemical kinetic parameters using the Kissinger method are calculated. Activation energies of solid SCR from this experiment are compared with proper data of literature study, then obtained data of this experiment are used for the design of reactor and dosing system for candidate vehicle.

A study on the program development for area optimizing of damper ports in road tunnels with transverse ventilation system (횡류식 도로터널의 급, 배기구 포트 개구면적 최적화 프로그램 개발 연구)

  • Jo, Hyeong-Je;Chun, Kyu-Myung;Min, Dea-Kee;Kim, Jong-Won;Beak, Jong-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.177-188
    • /
    • 2019
  • The purpose of the optimization of the installation of supply/exhaust ports for tunnels with transverse ventilation system is to supply fresh air from outside to inside of tunnels uniformly and exhaust pollutant from tunnels properly for creating safe and clean environment for tunnel users. For this purpose, a ventilation port area optimization program was developed to obtain a uniform supply or exhaust air volume inside a great depth double deck tunnel with transverse ventilation system. In order to area optimize the developed port sizing program, the wind velocity was measured in the duct of the currently operated tunnel with semi-transverse ventilation. Also 3D cfd was performed on the same tunnel and cfd results were compared to the measured value. As a result, the error rate between the predicted value from the program and measured value was 6.72%, while the error rate between the predicted value from the program and 3D cfd analysis value was 4.86%. Both of comparison results show less than 10% of error rate. Thus It is expected that supply/exhaust port optimization design of transverse ventilation tunnel can be possible with using this large exhaust port area optimization program.

A Study on the Influences of Recirculated Exhaust Gas upon Wear of Cylinder and Piston in Diesel Engines with EGR System (EGR시스템 디젤기관의 실린더 및 피스톤 마모에 미치는 재순환 배기의 영향에 관한 연구)

  • 하정호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.827-835
    • /
    • 1998
  • The effects of recirculated exhaust gas on the wear of cylinder liner piston and piston rings have been investigated by the experiment with a two-cylinder four cycle indirect injection diesel engine operating at 75% load and 1600 rpm speed For the purpose of comparison between the rates of two cylinders with and without EGR the recirculated exhaust gas is sucked into one of two cylinders after the soot among exhaust emissions is removed by an intntionally designed cylinder-type scrubber equipped with 6 water injectors(A water injector has 144 nozzles of 1.0 mm diame-ter) while only the fresh air into another cylinder. These experiments are carried out on the fuel injection at a fixed $15.3^{\circ}$ BTDC timing. It is found that firstly the mean wear amount of cylinder liner with EGR is more increased in the measurement positions of the second half than of the first half and the mean wear amount without EGR is almost uniform regardless of measurement posi-tions secondly the wear rates of the first and second piston ring(compression ring)thickness with EGR are more than twice but the wear rate of oil ring thickness without EGR is more increased than that with EGR and finally the wear rate of piston skirt with EGR is a little bit increased but the piston hed diameter is rather increased owing to soot adhesion and corrosion wear and espe-cially larger with EGR.

  • PDF

Correlation Analysis for deriving Control Parameters in Vertical Shafts by Design of Experiments (실험계획법에 의한 수직샤프트 제어인자 도출을 위한 상관관계 분석)

  • Han, Hwa-Taik;Shin, Chul-Yong;Baek, Chang-In
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.895-900
    • /
    • 2008
  • It is the objective of the present study to conduct correlation analysis for deriving control parameters in vertical shafts using the results obtain by the design of experiments in the preceding research. The control parameters are categorized into objective parameters, derived parameters, condition parameters, operation parameters, and sensing parameters. The maximum pressure in the shaft should be sufficiently small in order to maintain exhaust hood performance. The pressure variations between floors should also be minimized in order to maintain uniform exhaust performance between floors and to save energy for excessive pressure drop in the shaft. The standard deviation based on -4Pa is proposed as an objective parameter to control pressure in shafts. The correlation equation has been obtained between the standard deviation and the sensing parameters of outdoor temperature and the pressure at the top of the shaft.

  • PDF