• Title/Summary/Keyword: uniform deformation method

Search Result 195, Processing Time 0.042 seconds

The Analysis of the Residual Stress and Bending Characteristics on the Heterogeneous Materials by Laser Welding (레이저 용접에 의한 이종재료의 잔류응력과 굽힘 특성 분석)

  • 오세헌;민택기
    • Journal of Welding and Joining
    • /
    • v.22 no.3
    • /
    • pp.45-49
    • /
    • 2004
  • Generally, it is used the compensation spring to compensate the inaccuracy of screen image induced by thermal deformation in CRT monitor. Its mechanism is hi-metallic system made of heterogeneous metals and these springs are bonded by laser welding. But laser welding induces a non-uniform temperature distribution, and residual stress is yielded locally by these temperature deviation. Therefore, this study measures the curvature constant to assess functions of the compensation spring of shadow mask with respect to increment temperature and estimates the effect of residual stress on the performance of tri-metal used to compensation spring.

Effect of grain refinement on the performance of AZ80 Mg alloys during wear and corrosion

  • Naik, Gajanan M;Gote, Gopal D.;Narendranath, S;Kumar, S.S. Satheesh
    • Advances in materials Research
    • /
    • v.7 no.2
    • /
    • pp.105-118
    • /
    • 2018
  • Magnesium and its alloys are attracted towards all engineering applications like automotive, marine, aerospace etc. due to its inherent high strength to weight ratio. But, extensive use of Mg alloys is limited to the current scenario because of low wear and corrosion resistance behavior. However, equal channel angular press is one of the severe plastic deformation technique which has been effective method to improve the wear and corrosion resistance by achieving fine grain structure. In this study, the effect of grain refinement on wear and corrosion resistance of AZ80 Mg alloys were investigated. The wear behavior of the coarse and fine-grained Mg alloys was examined through $L_9$ orthogonal array experiments in order to comprehend the wear behavior under varies control parameters. It was shown that ECAPed alloy increased the wear and corrosion resistance of the Mg alloy through the formation of fine grain and uniform distribution of secondary ${\beta}-phase$. Also, the performance of AZ80 Mg alloy for these changeswas discussed through SEM morphology.

Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities

  • Al-Maliki, Ammar F.H.;Faleh, Nadhim M.;Alasadi, Abbas A.
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.2
    • /
    • pp.147-159
    • /
    • 2019
  • In present article, a size-dependent refined thick beam element has been established based upon nonlocal elasticity theory. Next, it is used to explore vibration response of porous metal foam nanobeams on elastic medium. The established beam element introduces ten degrees of freedom. Different porosity distributions called uniform, symmetric and asymmetric will be employed. Herein, introduced thick beam element contains shear deformations without using correction factors. Convergence and verification studies of obtained results from finite element method are also provided. The impacts of nonlocality factor, foundation factors, shear deformation, slenderness ratio, porosity kinds and porosity factor on vibration frequencies of metal foam nano-sized beams have been explored.

Optimal stiffness distribution in preliminary design of tubed-system tall buildings

  • Alavi, Arsalan;Rahgozar, Reza
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.731-739
    • /
    • 2018
  • This paper presents an optimal pattern for distributing stiffness along a framed tube structure through an analytic equation, which may be used during the preliminary design stage. Most studies in this field are computationally intensive and time consuming, while a hand-calculation method, as presented here, is a more suitable tool for sensitivity analyses and parametric studies. Approach in development of the analytic model is to minimize the mean compliance (external work) for a given volume of material. A variational statement of the problem is made, and a specified deformation-profile is obtained as the necessary condition for a minimum; enforcing this condition, stiffness is then computed. Due to some near-zero values for stiffness, the problem is modified by considering a lower bound constraint. To deal with this constraint, the design domain is assumed to be divided into two zones of constant stiffness and constant curvature; and the problem is restated in terms of these concepts. It will be shown that this methodology allows for easy computation of stiffness through an analytic and dimensionless equation, valid in any system of units. To show practicality of the proposed method, a tubed-system structure with uniform stiffness distribution is redesigned using the proposed model. Comparative analyses of the results reveal that in addition to simplicity of the proposed method, it provides a rather high degree of accuracy for real-world problems.

Applicability estimation of ESPI on the vibration mode analysis of rectangular plate (직사각형 평판의 진동모드 해석에 관한 ESPI의 적용성 평가)

  • 김경석;정현철;박경주;양승필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.61-67
    • /
    • 1997
  • The electronic speckle pattern interferometer (ESPI) has been applied to many technical problems such as deformation and displacement measurement, strain visualization and surface roughness monitoring. In this study, we used an ESPI system based on the dual beam speckle interferometer method in order to measure in-plane displacement and vibration mode using the ESIP technique. This research was carried out for the purpose of applying the vibration analysis method employing Electro-Optic holographic interference technique to the vibration analysis of uniform rectangular cantilevers plate(SS400,STS304) with cantilevers span to breadth ratio of 150 by 75. And thickness of 1mm and 0.8mm respectively. We improved the ESPI technique in order to obtain the distribution of displacement component resolved in one direction through a CCD camera combined with an image processing system. To certify and to assess the accuracy in measuring by this ESPI, the results obtained with the speckle method and vibration mode analysis are to be compared with those results by Warbuton's Theoretical expression and vibration made in FEM analysis.

  • PDF

Finite Element Analysis for Micro-Forming Process Considering the Size Effect of Materials (소재 크기효과를 고려한 미세가공공정 유한요소해석)

  • Byon, S.M.;Lee, Y.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.544-549
    • /
    • 2006
  • In this work, we have employed the strain gradient plasticity theory to investigate the effect of material size on the deformation behavior in metal forming process. Flow stress is expressed in terms of strain, strain gradient (spatial derivative of strain) and intrinsic material length. The least square method coupled with strain gradient plasticity was used to calculate the components of strain gradient at each element of material. For demonstrating the size effect, the proposed approach has been applied to plane compression process and micro rolling process. Results show when the characteristic length of the material comes to the intrinsic material length, the effect of strain gradient is noteworthy. For the microcompression, the additional work hardening at higher strain gradient regions results in uniform distribution of strain. In the case of micro-rolling, the strain gradient is remarkable at the exit section where the actual reduction of the rolling finishes and subsequently strong work hardening take places at the section. This results in a considerable increase in rolling force. Rolling force with the strain gradient plasticity considered in analysis increases by 20% compared to that with conventional plasticity theory.

Multi-criteria performance-based optimization of friction energy dissipation devices in RC frames

  • Nabid, Neda;Hajirasouliha, Iman;Petkovski, Mihail
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.185-199
    • /
    • 2020
  • A computationally-efficient method for multi-criteria optimisation is developed for performance-based seismic design of friction energy dissipation dampers in RC structures. The proposed method is based on the concept of Uniform Distribution of Deformation (UDD), where the slip-load distribution along the height of the structure is gradually modified to satisfy multiple performance targets while minimising the additional loads imposed on existing structural elements and foundation. The efficiency of the method is demonstrated through optimisation of 3, 5, 10, 15 and 20-storey RC frames with friction wall dampers subjected to design representative earthquakes using single and multi-criteria optimisation scenarios. The optimum design solutions are obtained in only a few steps, while they are shown to be independent of the selected initial slip loads and convergence factor. Optimum frames satisfy all predefined design targets and exhibit up to 48% lower imposed loads compared to designs using a previously proposed slip-load distribution. It is also shown that dampers designed with optimum slip load patterns based on a set of spectrum-compatible synthetic earthquakes, on average, provide acceptable design solutions under multiple natural seismic excitations representing the design spectrum.

Load-Settlement Characteristics of Concrete TOP-BASE Foundation on Soft Ground (팽이기초공법(Top-Base Method)의 하중-침하량 분석)

  • Kim, Jae-Young;Jeong, Sang-Seom;Lee, Jae-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.210-221
    • /
    • 2009
  • A new foundation type which is called Top-Base method has been used frequently in engineering practices in Korea. In this study, the settlement behavior of concrete Top-Base foundation on soft ground is investigated since the consolidation settlement of the embedding depth and the effect of footing dimensions are not included in current Korean criterion (2007). To obtain detailed information, the model tests of the Top-Base foundation are performed using the PLAXIS 3D finite element analysis. It is shown that in-situ measurements and finite element analysis of the behavior of foundations indicate that consolidation settlement is reduced up and bearing capacity of the foundation increases up to 50%~100%, compared to the primary non-treated ground. Based on this study, it is found that the Top-Base foundation prevents the lateral deformation of soft ground and reduces its negative dilatancy to the surface settlement, and that the foundation creates rather uniform stress distribution under it to increase its bearing capacity. It is also found that the total settlement of Top-Base foundation was highly dependent on the consolidation settlement and footing configurations.

  • PDF

A Study on the Forming Characteristic of Inner Pyramid Structure Bonded Sheet Metal (피라미드형 내부구조재를 가지는 중공형 접합판재의 성형특성에 관한 연구)

  • Kim, J.Y.;Kil, H.Y.;Cho, G.C.;Kim, J.H.;Chung, W.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.295-299
    • /
    • 2006
  • The inner-structure bonded(ISB) sheet metal is defined as a composite sheet metal which has middle layer of truss-structure between two skin sheets. The characteristics such as ultra-light weight, high rigidity, high strength, etc are required especially for automobile parts. The characteristic of ISB sheet metal depends on inner-structure pattern or method of bonding. Pyramid type of crimped expanded metal is used for inner-structure and both of resistance welding and adhesive bonding are applied to make a specimen. As a result of compression test, it is appeared that forming limit is 10% reduction in thickness under a load of 8kgf per unit element(one inner-structure). In case of uniaxial tensile test the non-uniform surface integrity rather than the buckling of inner-structure happened at a load of 450kgf, which indicates elongation of 7.2% and thickness reduction of 13%. The eye-inspection method was applied to examine the defects occurring on the specimen during stretch forming. In case of biaxial stretch forming only the non-uniform deformation on the surface of a skin sheet could be observed. The forming limit in stretching of ISB sheet metal with the hemi-spherical punch of 150mm in diameter was 3mm in forming depth and 5% reduction in thickness.

  • PDF

Post-buckling finite strip analysis of thick functionally graded plates

  • Hajikazemi, M.;Ovesy, H.R.;Assaee, H.;Sadr, M.H.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.5
    • /
    • pp.569-595
    • /
    • 2014
  • In this paper, a novel semi-energy finite strip method (FSM) is developed based on the concept of first order shear deformation theory (FSDT) in order to attempt the post-buckling solution for thin and relatively thick functionally graded (FG) plates under uniform end-shortening. In order to study the effects of through-the-thickness shear stresses on the post-buckling behavior of FG plates, two previously developed finite strip methods, i.e., semi-energy FSM based on the concept of classical laminated plate theory (CLPT) and a CLPT full-energy FSM, are also implemented. Moreover, the effects of aspect ratio on initial post-buckling stiffness of FG rectangular plates are studied. It has been shown that the variation of the ratio of initial post-buckling stiffness to pre-buckling stiffness ($S^*/S$) with respect to aspects ratios is quite independent of volume fractions of constituents in thin FG plates. It has also been seen that the universal curve representing the variation of ($S^*/S$) with aspect ratio of a FG plate demonstrate a saw shape curve. Moreover, it is revealed that for the thin FG plates in contrast to relatively thick plates, the variations of non-dimensional load versus end-shortening is independent of ceramic-metal volume fraction index. This means that the post-buckling behavior of thin FG plates and the thin pure isotropic plates is similar. The results are discussed in detail and compared with those obtained from finite element method (FEM) of analysis. The study of the results may have a great influence in design of FG plates encountering post-buckling behavior.