• 제목/요약/키워드: uniform damping distribution system

검색결과 9건 처리시간 0.019초

인접한 쌍둥이 구조물의 진동제어를 위한 점성 감쇠기의 다목적 최적 분포 (Multi-Objective Optimal Distributions of Viscous Dampers for Vibration Control of Adjacent Twin Structures)

  • 류선호;옥승용
    • 한국안전학회지
    • /
    • 제33권2호
    • /
    • pp.61-67
    • /
    • 2018
  • This study proposes a new vibration control approach for adjacent twin structures, which is termed as viscous damper asymmetric coupling system in this paper. The proposed system takes a concept that the diagonal bracing viscous dampers are asymmetrically distributed in two buildings to break the behavior symmetry of the twin buildings and then the coupling viscous damper is additionally installed at the top floor of the two buildings to couple both buildings and interactively transfer the asymmetric behavior-caused damping forces into both buildings. These asymmetric damping distributions and interacting damping forces of the connection damper efficiently suppress the overall vibration of the damper-coupled adjacent twin buildings efficiently. Genetic algorithm (GA) based multi-objective optimization technique is adopted for optimal design of the proposed system. In the numerical example of adjacent twin 10-story building structures, the conventional control approach, that is, uniform damping distribution system (UDS) is also taken into account for comparison purpose. The optimization results verify that the proposed system either can improve the control performance over the UDS with the same damping capacity, or can save the damping capacity significantly while maintaining the similar level of control performance to the UDS.

인접구조물의 진동제어를 위한 선형감쇠시스템의 최적설계 (Optimal Design of Linear Viscous Damping System for Vibration Control of Adjacent Building Structures)

  • 박관순;옥승용;고현무
    • 한국지진공학회논문집
    • /
    • 제10권3호
    • /
    • pp.85-100
    • /
    • 2006
  • 이 논문에서는 서로 다른층 높이를 갖는 인접한 두 빌딩의 내진성능을 효율적으로 향상시킬 수 있는 선형 점성 감쇠기의 최적 설계방법을 제시하고자 한다. 이를 위하여 층간 대각 브레이싱 형태의 에너지 소산장치 연결방법과 인접 구조물간 에너지 소산장치 연결방법을 고려하였으며, 두 가지 연결방법을 적용한 시스템에 대한 감쇠용량별 주파수응답함수 비교를 통하여 구조물간 연결방법의 효율성을 확인하였다. 아울러 구조물간 연결방법에서 주파수응답함수를 최소화하는 최적 감쇠용량이 존재하는 것을 보이고, 최적 설계된 시스템에 대하여 감쇠용량별 구조물의 고유주파수 및 등가감쇠비의 민감도를 분석하였다. 민감도 분석 결과로부터 고층부에 설치되는 에너지 소산장치가 구조물의 등가 감쇠비를 효율적으로 증가시키는 것을 확인하였다. 따라서 민감도에 비례하는 새로운 감쇠기 설계방법을 제시하고, 대각 브레이싱 연결방법과 구조물간 연결로서 균등분포 및 제시하는 민감도 기반 분포에 따른 연결방법을 적용한 시스템들의 내진성능을 비교 분석하였다. 지진응답의 비교결과, 제시하는 방법이 인접 구조물의 효과적인 내진설계방법이 될 수 있음을 입증하였다.

Dynamic stability of FG-CNT-reinforced viscoelastic micro cylindrical shells resting on nonhomogeneous orthotropic viscoelastic medium subjected to harmonic temperature distribution and 2D magnetic field

  • Tohidi, H.;Hosseini-Hashemi, S.H.;Maghsoudpour, A.;Etemadi, S.
    • Wind and Structures
    • /
    • 제25권2호
    • /
    • pp.131-156
    • /
    • 2017
  • This paper deals with the dynamic stability of embedded functionally graded (FG)-carbon nanotubes (CNTs)-reinforced micro cylindrical shells. The structure is subjected to harmonic non-uniform temperature distribution and 2D magnetic field. The CNT reinforcement is either uniformly distributed or FG along the thickness direction where the effective properties of nano-composite structure are estimated through Mixture low. The viscoelastic properties of structure are captured based on the Kelvin-Voigt theory. The surrounding viscoelastic medium is considered nonhomogeneous with the spring, orthotropic shear and damper constants. The material properties of cylindrical shell and the viscoelastic medium constants are assumed temperature-dependent. The first order shear deformation theory (FSDT) or Mindlin theory in conjunction with Hamilton's principle is utilized for deriving the motion equations where the size effects are considered based on Eringen's nonlocal theory. Based on differential quadrature (DQ) and Bolotin methods, the dynamic instability region (DIR) of structure is obtained for different boundary conditions. The effects of different parameters such as volume percent and distribution type of CNTs, mode number, viscoelastic medium type, temperature, boundary conditions, magnetic field, nonlocal parameter and structural damping constant are shown on the DIR of system. Numerical results indicate that the FGX distribution of CNTs is better than other considered cases. In addition, considering structural damping of system reduces the resonance frequency.

Transient vibration analysis of FG-MWCNT reinforced composite plate resting on foundation

  • Kumar, Puneet;Srinivas, J.
    • Steel and Composite Structures
    • /
    • 제29권5호
    • /
    • pp.569-578
    • /
    • 2018
  • This paper aims to investigate the transient vibration behavior of functionally graded carbon nanotube (FG-CNT) reinforced nanocomposite plate resting on Pasternak foundation under pulse excitation. The plate is considered to be composed of matrix material and multi-walled carbon nanotubes (MWCNTs) with distribution as per the functional grading concept. The functionally graded distribution patterns in nanocomposite plate are explained more appropriately with the layer-wise variation of carbon nanotubes weight fraction in the thickness coordinate. The layers are stacked up in such a way that it yields uniform and three other types of distribution patterns. The effective material properties of each layer in nanocomposite plate are obtained by modified Halpin-Tsai model and rule of mixtures. The governing equations of an illustrative case of simply-supported nanocomposite plate resting on the Pasternak foundation are derived from third order shear deformation theory and Navier's solution technique. A converge transient response of nanocompiste plate under uniformly distributed load with triangular pulse is obtained by varying number of layer in thickness direction. The validity and accuracy of the present model is also checked by comparing the results with those available in literature for isotropic case. Then, numerical examples are presented to highlight the effects of distribution patterns, foundation stiffness, carbon nanotube parameters and plate aspect ratio on the central deflection response. The results are extended with the consideration of proportional damping in the system and found that nanocomposite plate with distribution III have minimum settling time as compared to the other distributions.

Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform Graphene platelet with magnetorheological fluid core

  • Eyvazian, Arameh;Hamouda, Abdel Magid;Tarlochan, Faris;Mohsenizadeh, Saeid;Dastjerdi, Ali Ahmadi
    • Steel and Composite Structures
    • /
    • 제33권6호
    • /
    • pp.891-906
    • /
    • 2019
  • This study considers the instability behavior of sandwich plates considering magnetorheological (MR) fluid core and piezoelectric reinforced facesheets. As facesheets at the top and bottom of structure have piezoelectric properties they are subjected to 3D electric field therefore they can be used as actuator and sensor, respectively and in order to control the vibration responses and loss factor of the structure a proportional-derivative (PD) controller is applied. Furthermore, Halpin-Tsai model is used to determine the material properties of facesheets which are reinforced by graphene platelets (GPLs). Moreover, because the core has magnetic property, it is exposed to magnetic field. In addition, Kelvin-Voigt theory is applied to calculate the structural damping of the piezoelectric layers. In order to consider environmental forces applied to structure, the visco-Pasternak model is assumed. In order to consider the mechanical behavior of structure, sinusoidal shear deformation theory (SSDT) is assumed and Hamilton's principle according to piezoelasticity theory is employed to calculate motion equations and these equations are solved based on differential cubature method (DCM) to obtain the vibration and modal loss factor of the structure subsequently. The effect of different factors such as GPLs distribution, dimensions of structure, electro-magnetic field, damping of structure, viscoelastic environment and boundary conditions of the structure on the vibration and loss factor of the system are considered. In order to indicate the accuracy of the obtained results, the results are validated with other published work. It is concluded from results that exposing magnetic field to the MR fluid core has positive effect on the behavior of the system.

Combination resonance analysis of FG porous cylindrical shell under two-term excitation

  • Ahmadi, Habib;Foroutan, Kamran
    • Steel and Composite Structures
    • /
    • 제32권2호
    • /
    • pp.253-264
    • /
    • 2019
  • This paper presents the combination resonances of FG porous (FGP) cylindrical shell under two-term excitation. The effect of structural damping on the system response is also considered. With regard to classical plate theory of shells, von-$K{\acute{a}}rm{\acute{a}}n$ equation and Hook law, the relations of stress-strain is derived for shell. According to the Galerkin method, the discretized motion equation is obtained. The combination resonances are obtained by using the method of multiple scales. Four types of FGP distributions consist of uniform porosity, non-symmetric porosity soft, non-symmetric porosity stiff and symmetric porosity distribution are considered. The influence of various porosity distributions, porosity coefficients of cylindrical shell and amplitude excitations on the combination resonances for FGP cylindrical shells is investigated.

Dynamic characteristics of multiple inerter-based dampers for suppressing harmonically forced oscillations

  • Chen, Huating;Jia, Shaomin;He, Xuefeng
    • Structural Engineering and Mechanics
    • /
    • 제72권6호
    • /
    • pp.747-762
    • /
    • 2019
  • Based on the ball-screw mechanism, a tuned viscous mass damper (TVMD) has been proposed, which has functions of amplifying physical mass of the system and frequency tuning. Considering the sensitivity of a single TVMD's effectiveness to frequency mistuning like that of the conventional tuned mass damper (TMD) and according to the concept of the conventional multiple tuned mass damper (MTMD), in the present paper, multiple tuned mass viscous dampers (MTVMD) consisting of many tuned mass dampers (TVMD) with a uniform distribution of natural frequencies are considered for attenuating undesirable vibration of a structure. The MTVMD is manufactured by keeping the stiffness and damping constant and varying the mass associated with the lead of the ball-screw type inerter element in the damper. The structure is represented by its mode-generalized system in a specific vibration mode controlled using the mode reduced-order method. Modal properties and fundamental characteristics of the MTVMD-structure system are investigated analytically with the parameters, i.e., the frequency band, the average damping ratio, the tuning frequency ratio, the total number of TVMD and the total mass ratio. It is found that there exists an optimum set of the parameters that makes the frequency response curve of the structure flattened with smaller amplitudes in a wider input frequency range. The effectiveness and robustness of the MTVMD are also discussed in comparison with those of the usual single TVMD (STVMD) and the results shows that the MTVMD is more effective and robust with the same level of total mass.

추계학적 선형화 방법 및 다목적 유전자 알고리즘을 이용한 지진하중을 받는 인접 구조물에 대한 비선형 감쇠시스템의 최적 설계 (Optimal design of nonlinear damping system for seismically-excited adjacent structures using multi-objective genetic algorithm integrated with stochastic linearization method)

  • 옥승용;송준호;고현무;박관순
    • 한국지진공학회논문집
    • /
    • 제11권6호
    • /
    • pp.1-14
    • /
    • 2007
  • 인접 구조물의 지진응답 제어를 위한 비선형 감쇠시스템의 최적 설계 방법에 관하여 연구하였다. 최적 설계를 위한 목적 함수로는 구조물의 응답과 감쇠기의 총 사용량을 고려하였으며, 상충하는 두 목적함수를 합리적인 수준에서 동시에 최소화하는 해를 구하기 위하여 유전자 알고리즘에 기반한 다목적 최적화 방법을 도입하였다. 또한, 최적화 과정에서 요구되는 비선형 시간이력해석을 수행하지 않고도, 비선형 이력감쇠기로 연결된 구조물의 지진응답을 효율적으로 평가하기 위하여 추계학적 선형화 방법을 접목하였다. 제시하는 방법의 효율성을 검증하기 위한 수치 예로서 20층과 10층의 인접 빌딩을 고려하였으며, 두 빌딩을 연결하는 비선형 감쇠시스템으로는 입력전압의 크기에 따라 변화하는 감쇠성능을 보이는 MR 감쇠기를 도입하였다. 제시하는 방법을 통하여 MR 감쇠기의 각 층별 최적 개수 및 감쇠용량을 결정할 수 있었으며, 이는 일반적인 균등분포 시스템에 비해 유사한 제어성능을 보이면서도 훨씬 경제적이었다. 또한, 인접구조물간 충돌에 대하여도 확률적으로 안정적인 거동을 보임을 검증하였으며, 제시하는 방법이 준능동 제어시스템의 최적 배치를 결정하기 위한 설계문제에도 적용할 수 있음을 보였다.

Thermodynamical bending analysis of P-FG sandwich plates resting on nonlinear visco-Pasternak's elastic foundations

  • Abdeldjebbar Tounsi;Adda Hadj Mostefa;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Mofareh Hassan Ghazwani;Fouad Bourada;Abdelhakim Bouhadra
    • Steel and Composite Structures
    • /
    • 제49권3호
    • /
    • pp.307-323
    • /
    • 2023
  • In this research, the study of the thermoelastic flexural analysis of silicon carbide/Aluminum graded (FG) sandwich 2D uniform structure (plate) under harmonic sinusoidal temperature load over time is presented. The plate is modeled using a simple two dimensional integral shear deformation plate theory. The current formulation contains an integral terms whose aim is to reduce a number of variables compared to others similar solutions and therefore minimize the computation time. The transverse shear stresses vary according to parabolic distribution and vanish at the free surfaces of the structure without any use of correction factors. The external load is applied on the upper face and varying in the thickness of the plates. The structure is supposed to be composed of "three layers" and resting on nonlinear visco-Pasternak's-foundations. The governing equations of the system are deduced and solved via Hamilton's principle and general solution. The computed results are compared with those existing in the literature to validate the current formulation. The impacts of the parameters (material index, temperature exponent, geometry ratio, time, top/bottom temperature ratio, elastic foundation type, and damping coefficient) on the dynamic flexural response are studied.