Browse > Article
http://dx.doi.org/10.12989/scs.2019.32.2.253

Combination resonance analysis of FG porous cylindrical shell under two-term excitation  

Ahmadi, Habib (Faculty of Mechanical Engineering, Shahrood University of Technology)
Foroutan, Kamran (Faculty of Mechanical Engineering, Shahrood University of Technology)
Publication Information
Steel and Composite Structures / v.32, no.2, 2019 , pp. 253-264 More about this Journal
Abstract
This paper presents the combination resonances of FG porous (FGP) cylindrical shell under two-term excitation. The effect of structural damping on the system response is also considered. With regard to classical plate theory of shells, von-$K{\acute{a}}rm{\acute{a}}n$ equation and Hook law, the relations of stress-strain is derived for shell. According to the Galerkin method, the discretized motion equation is obtained. The combination resonances are obtained by using the method of multiple scales. Four types of FGP distributions consist of uniform porosity, non-symmetric porosity soft, non-symmetric porosity stiff and symmetric porosity distribution are considered. The influence of various porosity distributions, porosity coefficients of cylindrical shell and amplitude excitations on the combination resonances for FGP cylindrical shells is investigated.
Keywords
cylindrical shell; FG porous material; combination resonance; multiple scales method; two-term excitation;
Citations & Related Records
Times Cited By KSCI : 14  (Citation Analysis)
연도 인용수 순위
1 Adim, B., Daouadji, T.H., Rabia, B. and Hadji, L. (2016d), "An efficient and simple higher order shear deformation theory for bending analysis of composite plates under various boundary conditions", Earthq. Struct., Int. J., 11(1), 63-82. https://doi.org/10.12989/eas.2016.11.1.063   DOI
2 Adim, B., Daouadji, T.H., Rabahi, A. and Abdelouahed, T. (2016e), "An Efficient and Simple Higher Order of Shear Deformation Theory for Static and Free Vibration of Laminated Composite Plates", Int. J. Compos. Mater. Matrices, 2(1).
3 Ahmadi, H. (2018), "Nonlinear primary resonance of imperfect spiral stiffened functionally graded cylindrical shells surrounded by damping and nonlinear elastic foundation", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-018-0679-2
4 Ahmadi, H. and Foroutan, K. (2019), "Nonlinear primary resonance of spiral stiffened functionally graded cylindrical shells with damping force using the method of multiple scales", Thin Wall. Struct., 135, 33-44. https://doi.org/10.1016/j.tws.2018.10.028   DOI
5 Alijani, F., Amabili, M. and Bakhtiari-Nejad, F. (2011), "On the accuracy of the multiple scales method for non-linear vibrations of doubly curved shallow shells", Int. J. Nonlin. Mech., 46(1), 170-179. https://doi.org/10.1016/j.ijnonlinmec.2010.08.006   DOI
6 Belica, T. and Magnucki, K. (2006), "Dynamic stability of a porous cylindrical shell", Appl. Math. Mech., 207-208.
7 Belica, T., Malinowski, M. and Magnucki, K. (2011), "Dynamic stability of an isotropic metal foam cylindrical shell subjected to external pressure and axial compression", J. Appl. Mech., 78(4), 041003. https://doi.org/10.1115/1.4003768   DOI
8 Benferhat, R., Daouadji, T.H. and Mansour, M.S. (2016a), "Free vibration analysis of FG plates resting on an elastic foundation and based on the neutral surface concept using higher-order shear deformation theory", Comptes Rendus Mecanique, 344(9), 631-641. https://doi.org/10.1016/j.crme.2016.03.002   DOI
9 Benferhat, R., Daouadji, T.H., Mansour, M.S. and Hadji, L. (2016b), "Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations", Earthq. Struct., Int. J., 10(6), 1429-1449. https://doi.org/10.12989/eas.2016.10.6.1429   DOI
10 Benferhat, R., Hassaine, D., Hadji, L. and Said, M. (2016c), "Static analysis of the fgm plate with porosities", Steel Compos. Struct., Int. J., 21(1), 123-136. https://doi.org/10.12989/scs.2016.21.1.123   DOI
11 Bich, D.H., Van Dung, D. and Nam, V.H. (2012), "Nonlinear dynamical analysis of eccentrically stiffened functionally graded cylindrical panels", Compos. Struct., 94(8), 2465-2473. https://doi.org/10.1016/j.compstruct.2012.03.012   DOI
12 Bich, D.H., Van Dung, D., Nam, V.H. and Phuong, N.T. (2013), "Nonlinear static and dynamic buckling analysis of imperfect eccentrically stiffened functionally graded circular cylindrical thin shells under axial compression", Int. J. Mech. Sci., 74, 190-200. https://doi.org/10.1016/j.ijmecsci.2013.06.002   DOI
13 Breslavsky, I.D. and Amabili, M. (2018), "Nonlinear vibrations of a circular cylindrical shell with multiple internal resonances under multi-harmonic excitation", Nonlin. Dyn., 1-10.
14 Brush, D.O. and Almroth, B.O. (1975), Buckling of Bars, Plates, and Shells, McGraw-Hill, New York, USA.
15 Dong, Y.H., Li, Y.H., Chen, D. and Yang, J. (2018), "Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion", Compos. Part B-Eng., 145, 1-13. https://doi.org/10.1016/j.compositesb.2018.03.009   DOI
16 Daouadji, T.H., Adim, B. and Benferhat, R. (2016a), "Bending analysis of an imperfect FGM plates under hygro-thermo-mechanical loading with analytical validation", Adv. Mater. Res., Int. J., 5(1), 35-53. https://doi.org/10.12989/amr.2016.5.1.035   DOI
17 Daouadji, T.H., Benferhat, R. and Adim, B. (2016b), "A novel higher order shear deformation theory based on the neutral surface concept of FGM plate under transverse load", Adv. Mater. Res., Int. J., 5(2), 107-120. https://doi.org/10.12989/amr.2016.5.2.107
18 Djoudi, M.S. and Bahai, H. (2003), "A shallow shell finite element for the linear and non-linear analysis of cylindrical shells", Eng. Struct., 25, 769-778. https://doi.org/10.1016/S0141-0296(03)00002-6   DOI
19 Du, C. and Li, Y. (2014), "Nonlinear internal resonance of functionally graded cylindrical shells using the hamiltonian dynamics", Acta Mech. Solida Sin., 27(6), 635-647. https://doi.org/10.1016/S0894-9166(15)60008-8   DOI
20 Ebrahimi, F. and Habibi, S. (2016), "Deflection and vibration analysis of higher-order shear deformable compositionally graded porous plate", Steel Compos. Struct., Int. J., 20(1), 205-225. http://dx.doi.org/10.12989/scs.2016.20.1.205   DOI
21 Galeban, M.R., Mojahedin, A., Taghavi, Y. and Jabbari, M. (2016), "Free vibration of functionally graded thin beams made of saturated porous materials", Steel Compos. Struct., Int. J., 21(5), 999-1016. https://doi.org/10.12989/scs.2016.21.5.999   DOI
22 Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A.M.S. and Kazemi, M. (2017), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., Int. J., 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415
23 Li, H., Pang, F., Chen, H. and Du, Y. (2019), "Vibration analysis of functionally graded porous cylindrical shell with arbitrary boundary restraints by using a semi analytical method", Compos. Part B-Eng., 164, 249-264. https://doi.org/10.1016/j.compositesb.2018.11.046   DOI
24 Loy, C.T., Lam, K.Y. and Reddy, J.N. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41, 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X   DOI
25 Magnucki, K., Malinowski, M. and Kasprzak, J. (2006), "Bending and buckling of a rectangular porous plate", Steel Compos. Struct., Int. J., 6(4), 319-333. https://doi.org/10.12989/scs.2006.6.4.319   DOI
26 Mojahedin, A., Joubaneh, E.F. and Jabbari, M. (2014), "Thermal and mechanical stability of a circular porous plate with piezoelectric actuators", Acta Mech., 225(12), 3437-3452. https://doi.org/10.1007/s00707-014-1153-x   DOI
27 Pellicano, F. (2007), "Vibrations of circular cylindrical shells: Theory and experiments", J. Sound Vib., 303(1-2), 154-170. https://doi.org/10.1016/j.jsv.2007.01.022   DOI
28 Sewall, J.L. and Naumann, E.C. (1968), "An experimental and analytical vibration study of thin cylindrical shells with and without longitudinal stiffeners", NASA Technical Note D-4705.
29 Rodrigues, L., Goncalves, P.B. and Silva, F.M.A. (2017), "Internal resonances in a transversally excited imperfect circular cylindrical shell", Pro. Eng., 199, 838-843. https://doi.org/10.1016/j.proeng.2017.09.010   DOI
30 Rossikhin, Y.A. and Shitikova, M.V. (2015), "Nonlinear dynamic response of a fractionally damped cylindrical shell with a three-to-one internal resonance", Appl. Math. Comput., 257, 498-525. https://doi.org/10.1016/j.amc.2015.01.018   DOI
31 Shen, H.-S. and Xiang, Y. (2012), "Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments", Comput. Methods Appl. Mech. Eng., 213, 196-205. https://doi.org/10.1016/j.cma.2011.11.025   DOI
32 Sheng, G.G. and Wang, X. (2018a), "The dynamic stability and nonlinear vibration analysis of stiffened functionally graded cylindrical shells", Appl. Math. Model., 56, 389-403. https://doi.org/10.1016/j.apm.2017.12.021   DOI
33 Sheng, G.G. and Wang, X. (2018b), "Nonlinear vibrations of fg cylindrical shells subjected to parametric and external excitations", Compos. Struct., 191, 78-88. https://doi.org/10.1016/j.compstruct.2018.02.018   DOI
34 Tesar, A. (1985), "Nonlinear three-dimensional resonance analysis of shells", Comput. Struct., 21, 797-805. https://doi.org/10.1016/0045-7949(85)90156-7   DOI
35 Zhang, W., Liu, T., Xi, A. and Wang, Y.N. (2018), "Resonant responses and chaotic dynamics of composite laminated circular cylindrical shell with membranes", J. Sound Vib., 423, 65-99. https://doi.org/10.1016/j.jsv.2018.02.049   DOI
36 Yang, J., Chen, D. and Kitipornchai, S. (2018), "Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method", Compos. Struct., 193, 281-294. https://doi.org/10.1016/j.compstruct.2018.03.090   DOI
37 Zare Jouneghani, F., Dimitri, R., Bacciocchi, M. and Tornabene, F. (2017), "Free vibration analysis of functionally graded porous doubly-curved shells based on the first-order shear deformation theory", Appl. Sci., 7(12), 1252. https://doi.org/10.3390/app7121252   DOI
38 Zhang, L., Song, Z. and Liew, K. (2017), "Modeling aerothermoelastic properties and active flutter control of nanocomposite cylindrical shells in supersonic airflow under thermal environments", Comput. Methods Appl. Mech. Eng., 325, 416-433. https://doi.org/10.1016/j.cma.2017.07.014   DOI
39 Zhao, J., Wang, Q., Deng, X., Choe, K., Xie, F. and Shuai, C. (2019a), "A modified series solution for free vibration analyses of moderately thick functionally graded porous (FGP) deep curved and straight beams", Compos. Part B-Eng., 165, 155-166. https://doi.org/10.1016/j.compositesb.2018.11.080   DOI
40 Zhao, J., Wang, Q., Deng, X., Choe, K., Zhong, R. and Shuai, C. (2019b), "Free vibrations of functionally graded porous rectangular plate with uniform elastic boundary conditions", Compos. Part B-Eng., 168, 106-120. https://doi.org/10.1016/j.compositesb.2018.12.044   DOI
41 Daouadji, T.H. and Adim, B. (2016a), "An analytical approach for buckling of functionally graded plates", Adv. Mater. Res., Int. J., 5(3), 141-169. https://doi.org/10.12989/amr.2016.5.3.141
42 Zhao, J., Xie, F., Wang, A., Shuai, C., Tang, J. and Wang, Q. (2019c), "A unified solution for the vibration analysis of functionally graded porous (FGP) shallow shells with general boundary conditions", Compos. Part B-Eng., 156, 406-424. https://doi.org/10.1016/j.compositesb.2018.08.115   DOI
43 Zhao, J., Xie, F., Wang, A., Shuai, C., Tang, J. and Wang, Q. (2019d), "Dynamics analysis of functionally graded porous (FGP) circular, annular and sector plates with general elastic restraints", Compos. Part B-Eng., 159, 20-43. https://doi.org/10.1016/j.compositesb.2018.08.114   DOI
44 Zhao, J., Xie, F., Wang, A., Shuai, C., Tang, J. and Wang, Q. (2019e), "Vibration behavior of the functionally graded porous (FGP) doubly-curved panels and shells of revolution by using a semi-analytical method", Compos. Part B-Eng., 157, 219-238. https://doi.org/10.1016/j.compositesb.2018.08.087   DOI
45 Chen, D., Yang, J. and Kitipornchai, S. (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Struct., 133, 54-61. https://doi.org/10.1016/j.compstruct.2015.07.052   DOI
46 Daneshjou, K., Ramezani, H. and Talebitooti, R. (2011), "Wave transmission through laminated composite double-walled cylindrical shell lined with porous materials", Appl. Math. Mech., 32, 701-718. https://doi.org/10.1007/s10483-011-1450-9   DOI
47 Daouadji, T.H. and Adim, B. (2016b), "Theoretical analysis of composite beams under uniformly distributed load", Adv. Mater. Res., Int. J., 5(1), 1-9. https://doi.org/10.12989/amr.2016.5.1.001   DOI
48 Ghiasian, S.E., Kiani, Y. and Eslami, M.R. (2013), "Dynamic buckling of suddenly heated or compressed fgm beams resting on nonlinear elastic foundation", Compos. Struct., 106, 225-234. https://doi.org/10.1016/j.compstruct.2013.06.001   DOI
49 Gao, K., Gao, W., Wu, B., Wu, D. and Song, C. (2018), "Nonlinear primary resonance of functionally graded porous cylindrical shells using the method of multiple scales", Thin Wall. Struct., 125, 281-293. https://doi.org/10.1016/j.tws.2017.12.039   DOI
50 Ghadiri, M. and SafarPour, H. (2017), "Free vibration analysis of size-dependent functionally graded porous cylindrical microshells in thermal environment", J. Therm. Stresses, 40(1), 55-71. https://doi.org/10.1080/01495739.2016.1229145   DOI
51 Guan, X., Sok, K., Wang, A., Shuai, C., Tang, J. and Wang, Q. (2019), "A general vibration analysis of functionally graded porous structure elements of revolution with general elastic restraints", Compos. Struct., 209, 277-299. https://doi.org/10.1016/j.compstruct.2018.10.103   DOI
52 Karami, B., Shahsavari, D., Nazemosadat, S.M.R., Li, L. and Ebrahimi, A. (2018), "Thermal buckling of smart porous functionally graded nanobeam rested on kerr foundation", Steel Compos. Struct., Int. J., 29(3), 349-362. https://doi.org/10.12989/scs.2018.29.3.349
53 Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Design, 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061   DOI
54 Li, X., Du, C.C. and Li, Y.H. (2018), "Parametric resonance of a fg cylindrical thin shell with periodic rotating angular speeds in thermal environment", Appl. Math. Model., 59, 393-409. https://doi.org/10.1016/j.apm.2018.01.048   DOI
55 Abe, A., Kobayashi, Y. and Yamada, G. (2007), "Nonlinear dynamic behaviors of clamped laminated shallow shells with one-to-one internal resonance", J. Sound Vib., 304, 957-968. https://doi.org/10.1016/j.jsv.2007.03.009   DOI
56 Pradhan, S.C., Loy, C.T., Lam, K.Y. and Reddy, J.N. (2000), "Vibration characteristics of functionally graded cylindrical shells under various boundary conditions", Appl. Acoust., 61, 111-129. https://doi.org/10.1016/S0003-682X(99)00063-8   DOI
57 Qin, Z., Chu, F. and Zu, J. (2017), "Free vibrations of cylindrical shells with arbitrary boundary conditions: A comparison study", Int. J. Mech. Sci., 133, 91-99. https://doi.org/10.1016/j.ijmecsci.2017.08.012   DOI
58 Volmir, A.S. (1972), Non-linear dynamics of plates and shells, Science Edition M, USSR.
59 Wang, Y. and Wu, D. (2017), "Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory", Aerosp. Sci. Tech., 66, 83-91. https://doi.org/10.1016/j.ast.2017.03.003   DOI
60 Abdelhak, Z., Hadji, L., Daouadji, T.H. and Adda, B. (2016), "Thermal buckling response of functionally graded sandwich plates with clamped boundary conditions", Smart Struct. Syst., Int. J., 18(2), 267-291. https://doi.org/10.12989/sss.2016.18.2.267   DOI
61 Adim, B. and Daouadji, T.H. (2016), "Effects of thickness stretching in FGM plates using a quasi-3D higher order shear deformation theory", Adv. Mater. Res., Int. J., 5(4), 223-244. https://doi.org/10.12989/amr.2016.5.4.223
62 Adim, B., Daouadji, T.H. and Abbes, B. (2016a), "Buckling analysis of anti-symmetric cross-ply laminated composite plates under different boundary conditions", Int. Appl. Mech., 52(6), 661-676. https://doi.org/10.1007/s10778-016-0787-x   DOI
63 Adim, B., Daouadji, T.H., Abbes, B. and Rabahi, A. (2016b), "Buckling and free vibration analysis of laminated composite plates using an efficient and simple higher order shear deformation theory", Mech. Indus., 17(5), 512. https://doi.org/10.1051/meca/2015112   DOI
64 Adim, B., Daouadji, T.H. and Rabahi, A. (2016c), "A simple higher order shear deformation theory for mechanical behavior of laminated composite plates", Int. J. Adv. Struct. Eng. (IJASE), 8(2), 103-117. https://doi.org/10.1007/s40091-016-0109-x   DOI