• Title/Summary/Keyword: uniform column

Search Result 104, Processing Time 0.02 seconds

On the Optimum Modelization for a Spray Column Direct Contact Heat Exchanger (분사칼럼식 직접접촉 열교환기의 최적 모델링을 위한 연구)

  • Yoon, S.M.;Kang, Y.H.;Kim, C.B.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 1991
  • The purpose of this study is to lay groundwork for a complete analysis of two component flow by analyzing a single component flow made of continuous fluid without dispersed phase. In order to achieve uniform velocity distributions which are desirable in designing an optimum spray column direct contact heat exchanger, the influence of injection nozzle orientation has been investigated for axial and radial injections. The results that radial injection ensures more uniform velocity distributions compared to the axial case. The flow characteristics in a spray column have been investigated with various L/D values and inlet velocities, the most uniform internal velocity distributions have been obtained for the case of L/D=10 and 0.1m/sec. In the present investigation, it is shown that radial injection method for the continuous flow is advantageous in obtaining desirable uniform velocity distributions in a spray column. It is also found that as the value of L/D increases and the inlet velocity decreases, the flow improves to be better uniform velocity distributions.

  • PDF

Empirical Correlations for Breakup Length of Liquid Jet in Uniform Cross Flow-A Review

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.18 no.1
    • /
    • pp.35-43
    • /
    • 2013
  • The empirical correlations for the prediction of breakup length of liquid jet in uniform cross flow are reviewed and classified in this study. The breakup length of liquid jets in cross flow was normally discussed in terms of the distances from the nozzle exit to the column breakup location in the x and y directions, called as column fracture distance and column fracture height, respectively. The empirical correlations for the prediction of column fracture distance can be classified as constant form, momentum flux ratio form, Weber number form and other parameter form, respectively. In addition, the empirical correlations for the prediction of column fracture height can be grouped as momentum flux ratio form, Weber number form and other parameter form, respectively. It can be summarized that the breakup length of liquid jet in a cross flow is a basically function of the liquid to air momentum flux ratio. However, Weber number, liquid-to-air viscosity ratio and density ratio, Reynolds number or Ohnesorge number were incorporated in the empirical correlations depending on the investigators. It is clear that there exist the remarkable discrepancies of predicted values by the existing correlations even though many correlations have the same functional form. The possible reasons for discrepancies can be summarized as the different experimental conditions including jet operating condition and nozzle geometry, measurement and image processing techniques introduced in the experiment, difficulties in defining the breakup location etc. The evaluation of the existing empirical correlations for the prediction of breakup length of liquid jet in a uniform cross flow is required.

Critical buckling load optimization of the axially graded layered uniform columns

  • Alkan, Veysel
    • Structural Engineering and Mechanics
    • /
    • v.54 no.4
    • /
    • pp.725-740
    • /
    • 2015
  • This study presents critical buckling load optimization of the axially graded layered uniform columns. In the first place, characteristic equations for the critical buckling loads for all boundary conditions are obtained using the transfer matrix method. Then, for each case, square of this equation is taken as a fitness function together with constraints. Due to explicitly unavailable objective function for the critical buckling loads as a function of segment length and volume fraction of the materials, especially for the column structures with higher segment numbers, initially, prescribed value is assumed for it and then the design variables satisfying constraints are searched using Differential Evolution (DE) optimization method coupled with eigen-value routine. For constraint handling, Exterior Penalty Function formulation is adapted to the optimization cycle. Different boundary conditions are considered. The results reveal that maximum increments in the critical buckling loads are attained about 20% for cantilevered and pinned-pinned end conditions and 18% for clamped-clamped case. Finally, the strongest column structure configurations will be determined. The scientific and statistical results confirmed efficiency, reliability and robustness of the Differential Evolution optimization method and it can be used in the similar problems which especially include transcendental functions.

Post-buckling of Non-uniform Cantilever Column Subjected to a Combined Load (결합하중을 받는 임의단면 기둥의 좌굴후 해석)

  • Shin, Young-Jae;Chiba, Masakatsu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.5
    • /
    • pp.323-329
    • /
    • 2002
  • This paper presents the application of the technique of differential transformation to the post-buckling problem of non-uniform cantilever column subjected to a combined load. Numerical calculations are carried out and compared with previously published results to validate the results of the present method. The results obtained by this method agree very well with those reported in the previous works. The results obtained by the present method are presented for both various non-uniform columns and loads.

Influence of internal pores and graphene platelets on vibration of non-uniform functionally graded columns

  • Liu, Wen-qi;Liu, Shan-jun;Fan, Ming-yu;Tian, Wei;Wang, Ji-peng;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.35 no.2
    • /
    • pp.295-306
    • /
    • 2020
  • This paper deals with free vibration analysis of non-uniform column resting on elastic foundations and subjected to follower force at its free end. The internal pores and graphene platelets (GPLs) are distributed in the matrix according to different patterns. The model is proposed with material parameters varying in the thickness of column to achieve graded distributions in both porosity and nanofillers. The elastic modulus of the nanocomposite is obtained by using Halpin-Tsai micromechanics model. The differential quadrature method as an efficient and accurate numerical approach is used to discretize the governing equations and to implement the boundary conditions. It is observed that the maximum vibration frequency obtained in the case of symmetric porosity and GPL distribution, while the minimum vibration frequency is obtained using uniform porosity distribution. Results show that for better understanding of mechanical behavior of nanocomposite column, it is crucial to consider porosities inside the material structure.

Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity

  • Akgoz, Bekir;Civalek, Omer
    • Structural Engineering and Mechanics
    • /
    • v.48 no.2
    • /
    • pp.195-205
    • /
    • 2013
  • The buckling problem of linearly tapered micro-columns is investigated on the basis of modified strain gradient elasticity theory. Bernoulli-Euler beam theory is used to model the non-uniform micro column. Rayleigh-Ritz solution method is utilized to obtain the critical buckling loads of the tapered cantilever micro-columns for different taper ratios. Some comparative results for the cases of rectangular and circular cross-sections are presented in graphical and tabular form to show the differences between the results obtained by modified strain gradient elasticity theory and those achieved by modified couple stress and classical theories. From the results, it is observed that the differences between critical buckling loads achieved by classical and those predicted by non-classical theories are considerable for smaller values of the ratio of the micro-column thickness (or diameter) at its bottom end to the additional material length scale parameters and the differences also increase due to increasing of the taper ratio.

Dynamic Characteristics of Tuned Liquid Column Dampers Using Shaking Table Test (진동대실험에 의한 동조액체기둥감쇠기의 동적특성)

  • Min, Kyung-Won;Park, Eun-Churn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.620-627
    • /
    • 2009
  • Shaking table test was carried out to obtain dynamic characteristics of TLCDs with uniform and non-uniform sections for both horizontal and vertical tubes. The input to the table is harmonic acceleration with constant magnitude. The output is horizontal dynamic force which is measured by load cell installed below the TLCD. Transfer functions are experimentally obtained using the ratio of input and output. Natural frequency, the most important design factor, is compared to that by theoretical equation for TLCDs with five different water levels. System identification process is performed for experimentally obtained transfer functions to find the dynamic characteristics of head loss coefficient and effective mass of TLCDs. It is found that their magnitudes are larger for a TLCD with non-uniform section than with uniform section and natural frequencies are close to theoretical ones.

Design tables and charts for uniform and non-uniform tuned liquid column dampers in harmonic pitching motion

  • Wu, Jong-Cheng;Wang, Yen-Po;Chen, Yi-Hsuan
    • Smart Structures and Systems
    • /
    • v.9 no.2
    • /
    • pp.165-188
    • /
    • 2012
  • In the first part of the paper, the optimal design parameters for tuned liquid column dampers (TLCD) in harmonic pitching motion were investigated. The configurations in design tables include uniform and non-uniform TLCDs with cross-sectional ratios of 0.3, 0.6, 1, 2 and 3 for the design in different situations. A closed-form solution of the structural response was used for performing numerical optimization. The results from optimization indicate that the optimal structural response always occurs when the two resonant peaks along the frequency axis are equal. The optimal frequency tuning ratio, optimal head loss coefficient, the corresponding response and other useful quantities are constructed in design tables as a guideline for practitioners. As the value of the head loss coefficient is only available through experiments, in the second part of the paper, the prediction of head loss coefficients in the form of a design chart are proposed based on a series of large scale tests in pitching base motions, aiming to ease the predicament of lacking the information of head loss for those who wishes to make designs without going through experimentation. A large extent of TLCDs with cross-sectional ratios of 0.3, 0.6, 1, 2 and 3 and orifice blocking ratios ranging from 0%, 20%, 40%, 60% to 80% were inspected by means of a closed-form solution under harmonic base motion for identification. For the convenience of practical use, the corresponding empirical formulas for predicting head loss coefficients of TLCDs in relation to the cross-sectional ratio and the orifice blocking ratio were also proposed. For supplemental information to horizontal base motion, the relation of head loss values versus blocking ratios and the corresponding empirical formulas were also presented in the end.

Shape Optimization of Damaged Columns Subjected to Conservative and Non-Conservative Forces

  • Jatav, S.K.;Datta, P.K.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.20-31
    • /
    • 2014
  • This paper deals with the development of a realistic shape optimization of damaged columns that are subjected to conservative and non-conservative forces, using the Genetic Algorithm (GA). The analysis is based on the design of the most optimized shape of the column under the constraint of constant weight, considering the Static, Vibrational, and Flutter characteristics. Under the action of conservative and non-conservative longitudinal forces, an elastic column loses its stability. A numerical analysis based on FEM has been performed on a uniform damaged column, to compute the fundamental buckling load, vibration frequency, and flutter load, under various end restraints. An optimization search based on the Genetic Algorithm is then executed, to find the optimal shape design of the column. The optimized column references the one having the highest buckling load, highest vibration frequency, and highest flutter load, among all the possible shapes of the column, for a given volume. A comparison is then made between the values obtained for the optimized damaged column, and those obtained for the optimized undamaged column. The comparison reveals that the incorporation of damage in the column alters its optimal shape to only a certain extent. Also, the critical load and frequency values for the optimized damaged column are comparatively low, compared with those obtained for the optimized undamaged column. However, these results hold true only for moderate-intensity damage cases. For high intensity damage, the optimal shape may not remain the same, and may vary, according to the severity of damage.

An effect of initial disturbance on the breakup mechanism of liquid jet (초기교란이 액주의 분열기구에 미치는 영향)

  • Seok, J.K.;Park, Y.K.;Lee, C.W.
    • Journal of ILASS-Korea
    • /
    • v.3 no.2
    • /
    • pp.34-41
    • /
    • 1998
  • The present experimental study investigates the effect of an initial disturbance on the breakup mechanism of a liquid column. With varying the maginitude of the inital disturbance, we measure the surface wave of liquid column with adopting laser shadow method and analyze the growth rate of liquid column and breakup frequency. The experimental results show that thebreakup characteristics of liquid column is significantly influenced by the frequency of the initial disturbance. We concluded that the most uniform droplet occurs when the frequency of initial disturbance coincides with the natural frequency of the liquid column.

  • PDF