• Title/Summary/Keyword: uniaxial specimen

Search Result 202, Processing Time 0.029 seconds

Residual strength analysis for notched composite laminates (놋취가 있는 복합적층판의 잔류강도 해석)

  • Kim, Sung-Joon;Hwang, In-Hee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.1
    • /
    • pp.103-111
    • /
    • 2012
  • This study reviews several fracture models for predicting the residual strength of notched composite laminates. Representative experimental results on the residual strength of composite laminates containing a notch subjected to static uniaxial tensile loading have been collected from open literature. And notched strength data for T300/5208 are analyzed. The various parameters associated with the fracture models have been determined for laminates. Notched strength data sets are compared with fracture models and the applicability of the different fracture models in predicting the notched strength of composite laminates is discussed. And static tests have been performed on 2.0mm depth notched specimen. And the test results are compared with analysis models.

Stress Effects on Magnetic Properties of Amorphous Fe-B-Si Ribbon (Fe-B-Si 비정질 리본의 자기특성에 미치는 응력의 영향)

  • 송재성;김기욱;임호빈
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.5
    • /
    • pp.496-500
    • /
    • 1991
  • The effects of annealing with and without magnetic field on magnetic properties of amorphous Fe-B-Si cores have been investigated as a function of toroidal stress. By decreasing the toroidal stress, the magnetic properties of the amorphous ribbon have beenimproved. Near 180 domain walls exist in the thermally annealed toroidal cores, but the domain walls exist in the thermally annealed toroidal cores, but the domain walls are not parallel to the longitudinal direction of the ribbon. In the specimen annealed with a magnetic field strength of 10 Oe in the longitudinal ribbon length axis, the domains are nearly parallel to the longitudinal direction due to the field induced uniaxial anisotropy resulting in further increase in the remanent magnetization and decrease in the coercive force and loss.

  • PDF

Verification and application of beam-particle model for simulating progressive failure in particulate composites

  • Xing, Jibo;Yu, Liangqun;Jiang, Jianjing
    • Structural Engineering and Mechanics
    • /
    • v.8 no.3
    • /
    • pp.273-283
    • /
    • 1999
  • Two physical experiments are performed to verify the effectiveness of beam-particle model for simulating the progressive failure of particulate composites such as sandstone and concrete. In the numerical model, the material is schematized at the meso-level as an assembly of discrete, interacting particles which are linked through a network of brittle breaking beams. The uniaxial compressive tests of cubic and parallelepipedal specimens made of carbon steel rod assembly which are glued together by a mixture are represented. The crack patterns and load-displacement response observed in the experiments are in good agreement with the numerical results. In the application respect of beam-particle model to the particulate composites, the influence of defects, particle arrangement and boundary conditions on crack propagation is approached, and the correlation existing between the cracking evolution and the level of loads imposed on the specimen is characterized by fractal dimensions.

Scale effect of mechanical properties of jointed rock mass: A numerical study based on particle flow code

  • Wang, Xiao;Yuan, Wei;Yan, Yatao;Zhang, Xue
    • Geomechanics and Engineering
    • /
    • v.21 no.3
    • /
    • pp.259-268
    • /
    • 2020
  • The synthetic rock mass (SRM) were used to investigate the influence of specimen size on the mechanical properties of jointed rock mass. The SRM were established based on parallel bond model (PBM) and smooth joint model (SJM) and the scaled rock specimens were sampled in two SRMs considering three sampling locations. The research results show that the smaller the initial fracture density is, the greater the uniaxial compressive strength (UCS), elastic modulus (E) is when compared with the same sampling location. The mechanical properties of rock specimens obtained by different sampling methods in different SRMs have different scale effects. The strength of rock specimens with more new cracks is not necessarily less than that of rock specimens with fewer new cracks and the failure of rock is caused by the formation of macro-fracture surface.

Investigation on the Experimental Results of Anisotropic Fracture Behavior for UHSS 1470 MPa Grade Sheets (초고강도 1470 MPa급 판재의 파단 이방성 실험 결과에 관한 연구)

  • J. Lee;H. J. Bong;D. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.2
    • /
    • pp.87-91
    • /
    • 2023
  • In the present work, the ductile fracture behaviors of ultra-high strength steel sheets along the different loading directions are investigated under various loading paths. Three loading paths, i.e., in-plane shear, uniaxial tension, plane strain tension deformations, are considered, and the corresponding specimens are described. The experiments are conducted using the digital image correlation (DIC) system to analyze the strain at the onset of the fracture. The experimental results show that the loading path for each specimen sample is linear, and different values of the fracture strains for the loading direction from the plane strain tension are observed. The ductile fracture model of the modified Mohr-Coulomb (MMC) is constructed based on the experimental data and evaluated along the rolling direction and transverse direction under various loading paths.

DENSIFICATION AND MECHANICAL PROPERTIES OF 439L STEEL COMPOSITES BLENDED WITH FIFTEEN MICRON-SIZE SILICON CARBIDE PARTICLES

  • SANG WOO LEE;HYUNHO SHIN;KYONG YOP RHEE
    • Archives of Metallurgy and Materials
    • /
    • v.64 no.3
    • /
    • pp.883-888
    • /
    • 2019
  • 439L stainless steel composites blended with fifteen micron SiC particles were prepared by uniaxial pressing of raw powders at 100 MPa and conventional sintering at 1350℃ for 2 h. Based on the results of X-ray diffraction analysis, dissolution of SiC particles were apparent. The 5 vol% SiC specimen demonstrated maximal densification (91.5%) among prepared specimens (0-10 vol% SiC); the relative density was higher than the specimens in the literature (80-84%) prepared by a similar process but at a higher forming pressure (700 MPa). The stress-strain curve and yield strength were also maximal at the 5 vol% of SiC, indicating that densification is the most important parameter determining the mechanical property. The added SiC particles in this study did not serve as the reinforcement phase for the 439L steel matrix but as a liquid-phase-sintering agent for facilitating densification, which eventually improved the mechanical property of the sintered product.

Determination of Elastic Constants of Transversely Isotropic Rocks from a Single Test Specimen. (단일 시편을 이용한 평면 이방성 암석의 탄성계수 결정)

  • 장보안;나광희;장명환
    • Tunnel and Underground Space
    • /
    • v.11 no.1
    • /
    • pp.72-78
    • /
    • 2001
  • A method to determine elastic constants for transversely isotropic rock using a single uniaxial compression test was proposed by Kim(1995). However, some problems were found when this method was applied. We derived two different equations in determination of elastic constants using V$\sub$12/ and V$\sub$21/ and performed uniaxial compression tests for two specimens whose angles between transversely isotropic plane and horizontal plane are 30$^{\circ}C$ and 65$^{\circ}C$. The anisotropic elastic constants should be calculated with different equations depend on the angle. If the anisotropic angle is lower than 45$^{\circ}$, V$\sub$21/ may be used. However, if the anisotropic angle is higher than 45$^{\circ}$, V$\sub$12/ may be used.

  • PDF

Temperature-Dependency of Tensile Properties of GFRP Composite for Wind Turbine Blades (풍력 발전 블레이드 복합재 GFRP의 인장 특성의 온도 의존성)

  • Huh, Yong-Hak;Kim, Jong-Il;Kim, Dong-Jin;Lee, Gun-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1053-1057
    • /
    • 2012
  • In this study, the temperature-dependency of the tensile properties of a glass fiber reinforced plastic (GFRP) used in wind turbine blades was examined. The tensile strength, elastic modulus, and Poisson's ratio of the tensile specimen manufactured from uniaxial ($0^{\circ}$) and triaxial ($0/{\pm}45^{\circ}$) laminate composite plates were measured at four different testing temperatures-room temperature, $-30^{\circ}C$, $-50^{\circ}C$, and $60^{\circ}C$. It was found that the tensile strengths and elastic moduli of the uniaxial laminates were greater than those of the triaxial laminates over the testing temperature range. The tensile strength of the two laminates was significantly dependent on the testing temperature, while the dependency of the elastic modulus on the temperature was insignificant. Furthermore, it could be considered that the Poisson's ratio changed slightly with a change in the testing temperature.

Study of compressive behavior of triple joints using experimental test and numerical simulation

  • Sarfarazi, Vahab;Wang, Xiao;Nesari, Mojtaba;Ghalam, Erfan Zarrin
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.49-62
    • /
    • 2022
  • Experimental and discrete element methods were used to investigate the effects of triple joints lengths and triple joint angle on the failure behavior of rock mass under uniaxial compressive test. Concrete samples with dimension of 20 cm × 20 cm × 5 cm were prepared. Within the specimen, three imbedded joint were provided. The joint lengths were 2 cm, 4cm and 6 cm. In constant joint lengths, the angle between middle joint and other joints were 30°, 60°, 90°, 120° and 150°. Totally 15 different models were tested under compression test. The axial load rate on the model was 0.05 mm/min. Concurrent with experimental tests, the models containing triple joints, length and joint angle are similar to the experiments, were numerical by Particle flow code in two dimensions (PFC2D). Loading rate in numerical modelling was 0.05 mm/min. Tensile strength of material was 1 MPa. The results show that the failure behaviors of rock samples containing triple joints were governed by both of the angle and the length of the triple joints. The uniaxial compressive strengths (UCS) of the specimens were related to the fracture pattern and failure mechanism of the discontinuities. Furthermore, it was shown that the compressive behavior of discontinuities is related to the number of the induced tensile cracks which are increased by decreasing the joint length. Along with the damage failure of the samples, the acoustic emission (AE) activities are excited. There were only a few AE hits in the initial stage of loading, then AE hits rapidly grow before the applied stress reached its peak. In addition, every stress drop was accompanied by a large number of AE hits. Finally, the failure pattern and failure strength are similar in both methods i.e., the experimental testing and the numerical simulation methods.

Behavior of F shape non-persistent joint under experimental and numerical uniaxial compression test

  • Sarfarazi, Vahab;Asgari, Kaveh;Zarei, Meisam;Ghalam, Erfan Zarrin
    • Advances in concrete construction
    • /
    • v.13 no.2
    • /
    • pp.199-213
    • /
    • 2022
  • Experimental and discrete element approaches were used to examine the effects of F shape non-persistent joints on the failure behaviour of concrete under uniaxial compressive test. concrete specimens with dimensions of 200 cm×200 cm×50 cm were provided. Within the specimen, F shape non-persistent joint consisting three joints were provided. The large joint length was 6 cm, and the length of two small joints were 2 cm. Vertical distance between two small joints change from 1.5 cm to 4.5 cm with increment of 1.5 cm. In constant joint lengths, the angle of large joint change from 0° to 90° with increments of 30°. Totally 12 different models were tested under compression test. The axial load rate on the model was 0.05 mm/min. Concurrent with experimental tests, numerical simulation (Particle flow code in two dimension) were performed on the models containing F shape non-persistent joint. Distance between small joints and joint angles were similar to experimental one. the results indicated that the failure process was mostly governed by both of the Distance between small joints and joint angles. The axial loading rate on the model was 0.05 mm/min. The compressive strengths of the samples were related to the fracture pattern and failure mechanism of the discontinuities. Furthermore, it was shown that the compressive behaviour of discontinuities is related to the number of the induced tensile cracks which are increased by increasing the joint angle. In the first, there were only a few acoustic emission (AE) hits in the initial stage of loading, and then AE hits rapidly grow before the applied stress reached its peak. Furthermore, a large number of AE hits accompanied every stress drop. Finally, the failure pattern and failure strength are similar in both approaches i.e., the experimental testing and the numerical simulation approaches.