• Title/Summary/Keyword: uniaxial

Search Result 1,666, Processing Time 0.026 seconds

The Experimental Comparison of the Uniaxial and Biaxial Tensile Strengths of Concretes (일축 및 이축 휨인장강도의 실험적 비교)

  • Oh, Hong-Seob;Zi, Goang-Seup
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.139-146
    • /
    • 2008
  • The characteristics of the biaxial flexural tensile strength of concretes was compared to that of the uniaxial strength. The uniaxial and biaxial strengths in this study were obtained from the classical modulus of rupture test and the biaxial flexural test recently developed by Zi and Oh and Zi et al., respectively. Three different sizes were considered to investigate the effect of the size of aggregates. To estimate the stochastic aspect of the strength, 32 specimens were used for each test. The average biaxial flexural fracture strength was about 20% greater than the uniaxial test. At the same time, the coefficient of variation for the biaxial test was 18% greater than the uniaxial test. This means that the probability of the biaxial cracking can be greater than the uniaxial cracking.

A Study on the Mathematical Modeling of Human Pharyngeal Tissue Viscoelasticity (인두조직의 점 탄성특성의 수학적모델링에 관한 연구)

  • 김성민;김남현
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.495-502
    • /
    • 1998
  • A mathematical model of viscoelasticity on the material property of human pharyngeal tissue utilizing Y.C. Fung's Quasi-linear viscoelastic theory is proposed based on cyclic load, stress relaxation, incremental load, and uniaxial tensile load tests. The material properties are characterized and compared with other biological materials' results. The mathematical model is proposed by combining two characteristic functions determined from the stress relaxation and uniaxial tensile load tests. The reduced stress relaxation function G(t) and elastic response function S(t) are obtained from stress relaxation test and uniaxial tensile load test results respectively. Then the model describing stress-time history of the tissue is implemented utilizing two functions. The proposed model is evaluated and validated by comparing the model's cyclic behaviour with experimental results. The model data could be utilized as an important information for constructing 3-dimensional biomechanical model of human pharynx using FEM(Finite Element Method).

  • PDF

Study of cracks in compressed concrete specimens with a notch and two neighboring holes

  • Vahab, Sarfarazi;Kaveh, Asgari;Shirin, Jahanmiri;Mohammad Fatehi, Marji;Alireza Mohammadi, Khachakini
    • Advances in concrete construction
    • /
    • v.14 no.5
    • /
    • pp.317-330
    • /
    • 2022
  • This paper investigated computationally and experimentally the interaction here between a notch as well as a micropore under uniaxial compression. Brazilian tensile strength, uniaxial tensile strength, as well as biaxial tensile strength are used to calibrate PFC2d at first. Then, uniaxial compression test was conducted which they included internal notch and micro pore. Experimental and numerical building of 9 models including notch and micro pore were conducted. Model dimensions of models are 10 cm × 10 cm × 5 cm. Joint length was 2 cm. Joints angles were 30°, 45° and 60°. The position of micro pore for all joint angles was 2cm upper than top of the joint, 2 cm upper than middle of joint and 2 cm upper than the joint lower tip, discreetly. The numerical model's dimensions were 5.4 cm × 10.8 cm. The fractures were 2 cm in length and had angularities of 30, 45, and 60 degrees. The pore had a diameter of 1 cm and was located at the top of the notch, 2 cm above the top, 2 cm above the middle, and 2 cm above the bottom tip of the joint. The uniaxial compression strength of the model material was 10 MPa. The local damping ratio was 0.7. At 0.016 mm per second, it loaded. The results show that failure pattern affects uniaxial compressive strength whereas notch orientation and pore condition impact failure pattern. From the notch tips, a two-wing fracture spreads almost parallel to the usual load until it unites with the sample edge. Additionally, two wing fractures start at the hole. Both of these cracks join the sample edge and one of them joins the notch. The number of wing cracks increased as the joint angle rose. There aren't many AE effects in the early phases of loading, but they quickly build up until the applied stress reaches its maximum. Each stress decrease was also followed by several AE effects. By raising the joint angularities from 30° to 60°, uniaxial strength was reduced. The failure strengths in both the numerical simulation and the actual test are quite similar.

Uniaxial and Biaxial Flexural Strength of Plain Concrete using Optimum Specimen Configuration (최적실험체 제원에 의한 콘크리트의 일축 및 이축 휨인장강도)

  • Oh, Hongseob;Zi, Goangseup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.185-191
    • /
    • 2010
  • Because the concrete crack that is the reason of the serviceability and durability degradation of concrete structure can be arisen from either the stress magnitude and gradient or other structural and material defects, the crack strength of concrete is hard to accurately evaluate. Especially, stress-state in concrete plate components such as rigid pavement and long span slab is biaxial flexure stress, and the flexural strength of those component may be different than the traditional rupture modulus of concrete subjected to uniaxial stress. In this study, an experimental investigation to assess of mechanical behavior under uniaxial and biaxial flexure stress is conducted and the proposed optimum specimen configuration is adopted. From the test, the modulus of rupture under uniaxial and biaxial stress are decreased as the size of aggregate or specimen is larger. And biaxial flexure strength of concrete specimens is varied from 39.5 to 99.2% as compared with that of uniaxial strength, and the biaxial strength of specimen with 20mm aggregate size is only 76% of uniaxial strength.

A Study for the Adaptation of Simulation of Uniaxial Compressive Strength Test for Concrete in 3-Dimensional Particle Bonded Model (3차원 입자 결합 모델에서 콘크리트의 일축압축실험 모사 적용성 연구)

  • Lee, Hee-Kwang;Jeon, Seok-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.147-156
    • /
    • 2008
  • In an uniaxial compressive test of a concrete standard specimen (150$\times$300 mm) the crack initiation and extension with the stress increase are the major reason of the failure, which is similar to the breakage of the particle bonding in the simulation by using particle bonded model, especially particle flow code in 3 dimensions (PFC3D) developed by Itasca Consulting Group Inc. That is the main motive to study the possibility of an uniaxial compressive strength test simulation. It is important to investigate the relationship between the micro-parameters and the macro-properties because the 3-dimensional particle bonded model uses the spherical particles to analyze the physical phenomena. Contact bonded model used herein has eight micro-parameters and there are five macro-properties; Young's modulus, Poisson's ratio, uniaxial compressive strength and the crack initiation stress and the ratio concerning the crack propagation with the stress. To simulate the compressive test we made quantitative relationships between the micro-parameters and the macro-properties by using the fractional factorial design and various sensitivity analyses including regression analysis, which result in the good agreement with the previous studies. Also, the stress-stain curve and the crack distribution over the specimen given by PFC3D showed the mechanical behavior of the concrete standard specimen under the uniaxial compression. It is concluded that the particle bonded model can be a good tool for the analyzing the mechanical behavior of concrete under the uniaxial compressive load.

Evaluation for Applications of Displacement Criterion by the Critical Strain of Uniaxial Compression in Rock Mass Tunnel (일축압축 한계변형률에 의한 암반터널 변위기준 적용성 평가)

  • Kim, Young-Su;Kim, Dae-Man
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.321-329
    • /
    • 2009
  • Laboratory compressive test was conducted on 6 different types of rock in order to investigate the characteristic of critical strain under uniaxial and triaxial stress condition. The results of uniaxial compressive test mostly ranged within 1~100MPa, the critical strain was also located between 0.1~1.0%. Therefore the results distributed within the upper and lower boundary proposed by Sakurai (1982). And the failure/critical strain ratio (${\varepsilon}_f/{\varepsilon}_0$) showed between 1.0~1.8 value depending on the uniaxial compressive strength. The results of critical strain by triaxial compressive test showed below 0.8% value for all test, the M value calculated from uniaxial and triaxial compressive test results ranged 1.0~8.0 for most of rock specimens. It is concluded that failure strain (${\varepsilon}_{f3}$) of rock mass, which is in triaxial stress condition is larger than the results of uniaxial stress condition (${\varepsilon}_{f1}$) by 1.0~8.0 times and value showed 1.0~1.8 larger value than critical strain (${\varepsilon}_{01}$). Therefore it is a conservative way for rock tunnel to use critical strain (${\varepsilon}_{01}$) calculated from a uniaxial compressive strength on tunnel displacement monitoring.

A Study on Uniaxial Tensile Stress of Tensioned Membrane (인장막구조물의 단축인장응력에 관한 연구)

  • Kang, Joo-Won;Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.3
    • /
    • pp.85-93
    • /
    • 2011
  • Membrane materials are very flexible, thus wrinkling, uniaxial state, can be occurred. The wrinkling are due to lots of various factors as eccentric force, construction errors, and fabrication errors. These wrinkled membrane elements are in status of uniaxial stress. In the paper, a method which be able to check the wrinkling is proposed. The stress-deformation analysis of membrane structures for given external load will be carried out, and here the membrane elements are regarded as wrinkled state if the principal stress 2 is smaller than 0. With proposed method, two existed construction examples, Suwon auditorium and Okinawa 75 Expo, are analyzed.

Obtaining equivalent fracture toughness of concrete using uniaxial compression test

  • Li, Zongjin;Zhao, Yanhua
    • Computers and Concrete
    • /
    • v.7 no.4
    • /
    • pp.387-402
    • /
    • 2010
  • From typical stress-axial strain curve and stress-volume strain curve of a concrete under uniaxial compression, the initiation and localization of microcracks within the interior of the specimen can be identified. The occurrence of random microcrack indicates the end of the linear elasticity, and the localization of microcrack implies formation of major crack, which triggers the onset of unstable crack propagation. The interval between initiation and localization of microcracks is characterized by a stable microcrack growth. Based on fracture behavior observed from a uniaxial compressive test of a concrete cylinder, a model has been developed to extract fundamental fracture properties of a concrete, i.e. the equivalent fracture toughness and the size of fracture process zone. The introduction of cracking Poisson's ratio accounts for tensile failure characteristics of concrete even under uniaxal compression. To justify the validity of the model proposed, tests on three-point bending have been performed to obtain the fracture toughness in accordance with two parameter fracture model and double-K fracture model. Surprisingly, it yields favorably comparable results and provides an encouraging alternative approach to determine fracture properties for concretes.

Failure and Deformation Characteristics of Rock at High and Low Temperatures (고온 및 저온하에서의 암석의 변형, 파괴 특성)

  • 정재훈;김영근;이형원;이희근
    • Tunnel and Underground Space
    • /
    • v.2 no.2
    • /
    • pp.224-236
    • /
    • 1992
  • It is very important to determine the thermo-mechanical characteristics of the rock mass surrounding the repository of radioctive waste and the LPG storage cavern. In this study, Hwasoon-Shist. Dado-Tuff adn Chunan-Tonalite were the selected rock types. Temperature dependence of the mechanical properteis such as uniaxial compressive strength, tensile strength, Young's modulus was investigated by measuring the behaviour of these properties due to the variation of temperature. Also, the characteristics of strength and deformation of these rocks were examined through high-temperature triaxial compression tests with varing temperatures and confining pressures. Important results obtained are as follows: In high temperature tests, the uniaxial compressive strength and Yong's modulus of Tonalite showed a sligth increase at a temperature up to 300$^{\circ}C$ and a sharp decrease beyond 300$^{\circ}C$, and the tensile strength showed a linear decrease with increasing heating-temperature. In high-temperature triaxial compression test, both the failure stress and Young's modulus of Tonalite increased with the increase of confining pressure at constant heating-temperature, and the failure stress decreased at 100$^{\circ}C$ but increased at 200$^{\circ}C$ under a constant confining pressure. In low temperature tests, the uniaxial compressive and tensile strengths and Young's modulus of these rocks increased as the cooling-temperature is reduced. Also, the uniaxial compressive and tensile strengths of wet rock specimens are less than those of dry rock specimens.

  • PDF

A Study on Soil Improvement by Using High Pressure Grouting (고압분사공법에 의한 지반개량에 관한 연구)

  • Yoo, Jang-Heun;Cho, Nam-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.998-1004
    • /
    • 2005
  • U.J.S.(Ultra Jetting System) is a new ground improvement method registered as a Utility Model No.0205798, which has fundamentally improved the existing jetting method of J.S.P.(Jumbo Special Pattern System). In this study, the uniaxial compressive strengths of improved soil-grout structures by U.J.S. and J.S.P. which have been conducted on the construction site are compared. Also, the differences between the U.J.S. and J.S.P. are analyzed by considering the role of the auger bit, the injection distance measured from the axis of boring tubes, and angle of injection measured from the horizontal. The specimens of soil-grout structures are taken from the improved soils by using the U.J.S. and J.S.P. The uniaxial tests for the samples are conducted after the curing period of 28 days. The uniaxial compressive strengths and the coefficients of elasticity of surface and distance from the axis of boring. This study shows that the mean strength of the improved structure by J.S.P. is 1.9 times greater than by J.S.P.

  • PDF