• Title/Summary/Keyword: unfrozen water

Search Result 54, Processing Time 0.023 seconds

An Experimental Study of the King Sejong Station and Siberian Frozen Soils (세종기지 및 시베리아 흙의 동결특성 시험)

  • Kim, Youngchin;Shin, Jaewon;Son, Seungmo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.2
    • /
    • pp.5-12
    • /
    • 2009
  • Soil samples from the King Sejong Station in Antarctic and Vladivostok were tested in the laboratory and specific gravity, compaction curve, grain size distribution were determined. The effect of temperature change on the thermal conductivity, unfrozen water content, compressive strength were investigated. In addition, the change of tensile strength with temperature of the soil from Vladivostok was measured. Samples for the compressive strength test and tensional strength test were prepared in a mould with a fixed volume to prevent swelling. Also the effects of temperature and water content change on those strength were compared. Results from the thermal conductivity test showed that thermal conductivity values for both soils was larger at temperatures below freezing than those above freezing. The unfrozen water content dropped rapidly within a temperature range of $0{\sim}-5^{\circ}C$ and then gradually decreased further $-20^{\circ}C$. Compressive strength test results showed various stress/deformation curves with a change in water content. Sandy soil of the King Sejong Station had a much larger strength than ice at an identical temperature, while clayey soil of Vladivostok had a smaller strength than ice in the initial stage, but showed a larger strength at temperatures belows $-15^{\circ}C$. Tensile strength tests revealed an increase in the strength with a decreasing temperature.

  • PDF

Experimental study for application of the punch shear test to estimate adfreezing strength of frozen soil-structure interface

  • Park, Sangyeong;Hwang, Chaemin;Choi, Hangseok;Son, Youngjin;Ko, Tae Young
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.281-290
    • /
    • 2022
  • The direct shear test is commonly used to evaluate the shear behavior of frozen soil-structure interfaces under normal stress. However, failure criteria, such as the Mohr-Coulomb failure criterion, are needed to obtain the unconfined shear strength. Hence, the punch shear test, which is usually used to estimate the shear strength of rocks without confinement, was examined in this study to directly determine the adfreezing strength. It is measured as the shear strength of the frozen soil-structure interface under unconfined conditions. Different soils of silica sand, field sand, and field clay were prepared inside the steel and concrete ring structures. Soil and ring structures were frozen at the target temperature for more than 24 h. A punch shear test was then conducted. The test results show that the adfreezing strength increased with a decrease in the target temperature and increase in the initial water content, owing to the increase in ice content. The adfreezing strength of field clay was the smallest when compared with the other soil specimens because of the large amount of unfrozen water content. The field sand with the larger normalized roughness showed greater adfreezing strength than the silica sand with a lower normalized roughness. From the experiment and analysis, the applicability of the punch shear test was examined to measure the adfreezing strength of the frozen soil-structure interface. To find a proper sample dimension, supplementary experiments or numerical analysis will be needed in further research.

Development of a Freeze Dryer(I) (식품용 소형 진공 동결 건조기의 개발(I))

  • Lee, Seong-Jin;Kim, Uk-Jung
    • 연구논문집
    • /
    • s.22
    • /
    • pp.141-150
    • /
    • 1992
  • A basic study on the batch type freeze dryer has been carried out. The operating principles, merits and demerits of the freeze dryer were described. And the kinds of major components and their roles were also invesigated. As a fundamental study, using the Differential Scanning Calorimeter(DSC), the determination of unfrozen water in the specimens and invesigation of effects of cooling rate on the freeze drying were performed. To provide a guidline of basic design for a freeze dryer, a parametric study about the drying conditions was carried out.

  • PDF

Mechanical Constitutive Model for Frozen Soil (동토지반에 대한 역학적 구성모델)

  • Shin, Ho-Sung;Kim, Ji-Min;Lee, Jang-Guen;Lee, Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.85-94
    • /
    • 2012
  • Recently, growing interests in frozen ground have stimulated us to advance fundamental theories and systematic researches on soil behavior under freezing conditions. Unlike the well-established soil mechanics theory, temperature variation and phase change of pore-water cause water migration to cold side, ground heaving, sharp increase in earth pressure, etc., which bring about serious problems in frozen geotechnical structures. Elasto-plastic mechanical constitutive model for frozen/unfrozen soil subjected to fully coupled THM phenomena is formulated based on a new stress variable that is continuous in frozen-unfrozen transitional regions. Numerical simulations are conducted to discuss numerical reliability and applicability of the developed constitutive model: one-dimensional heaving pressure, tri-axial compression test, and one-side freezing tests. The numerical results show that developed model can efficiently describe complex THM phenomena of frozen soil, and they can be utilized to analyze and design the geotechnical structures under freezing conditions, and predict their long-term behavior.

Experimental and numerical investigation of closure time during artificial ground freezing with vertical flow

  • Jin, Hyunwoo;Go, Gyu-Hyun;Ryu, Byung Hyun;Lee, Jangguen
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.433-445
    • /
    • 2021
  • Artificial ground freezing (AGF) is a commonly used geotechnical support technique that can be applied in any soil type and has low environmental impact. Experimental and numerical investigations have been conducted to optimize AGF for application in diverse scenarios. Precise simulation of groundwater flow is crucial to improving the reliability these investigations' results. Previous experimental research has mostly considered horizontal seepage flow, which does not allow accurate calculation of the groundwater flow velocity due to spatial variation of the piezometric head. This study adopted vertical seepage flow-which can maintain a constant cross-sectional area-to eliminate the limitations of using horizontal seepage flow. The closure time is a measure of the time taken for an impermeable layer to begin to form, this being the time for a frozen soil-ice wall to start forming adjacent to the freeze pipes; this is of great importance to applied AGF. This study reports verification of the reliability of our experimental apparatus and measurement system using only water, because temperature data could be measured while freezing was observed visually. Subsequent experimental AFG tests with saturated sandy soil were also performed. From the experimental results, a method of estimating closure time is proposed using the inflection point in the thermal conductivity difference between pore water and pore ice. It is expected that this estimation method will be highly applicable in the field. A further parametric study assessed factors influencing the closure time using a two-dimensional coupled thermo-hydraulic numerical analysis model that can simulate the AGF of saturated sandy soil considering groundwater flow. It shows that the closure time is affected by factors such as hydraulic gradient, unfrozen permeability, particle thermal conductivity, and freezing temperature. Among these factors, changes in the unfrozen permeability and particle thermal conductivity have less effect on the formation of frozen soil-ice walls when the freezing temperature is sufficiently low.

Evaluation of the Mechanical Characteristics of Frozen Sand, Considering Temperature and Confining Pressure Effects, in a Cryogenic Triaxial Compression Test (동결 삼축압축시험을 통한 동결 사질토의 온도 및 구속압력에 따른 역학적 특성 평가)

  • Park, Sangyeong;Jung, Sanghoon;Hwang, Chaemin;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.8
    • /
    • pp.7-15
    • /
    • 2022
  • Most studies have conducted cryogenic triaxial compression tests with frozen specimens prepared in a separate mold by one-directional freezing. This method has the potential to generate residual stress in a frozen specimen and cannot be adopted to simulate the application of the artificial ground freezing method in the field. Therefore, in this study, novel equipment and procedure for the cryogenic triaxial compression test were proposed to overcome the limitations of existing test methods. Therefore, the mechanical characteristics of frozen sand, considering the effect of temperature and confining pressure, were evaluated. As the freezing temperature decreased, the brittleness of frozen sand increased, and the strength increased due to a decrease in the unfrozen water content and an increase in the ice strength. A higher confining pressure resulted in an increase in interparticle friction and the pressure melting phenomenon, which caused strength reduction. Thus, it was found that the mechanical behaviors of frozen sand were simultaneously affected by both temperature and confining pressure.

The Freezing Characteristics of Pavement Layer Using the Field Road Model Test (현장도로 모형실험을 이용한 포장구성층의 동결 특성 분석)

  • Shin, Eun-Chul;Ryu, Byung-Hyun;Park, Jeong-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.71-80
    • /
    • 2010
  • Korea is considered to be a seasonal frozen soil area that thaws in the spring, and freezes in winter. In the current design codes for anti-freezing layer, the thickness of anti-freezing layer is calculated by the depth frozen due to the temperature condition. Therefore, there is a tendency of over-design and applying uniform thickness without the consideration of thermal stability, bearing capacity and frost susceptibility of materials. So, it is essential to study the structural appropriateness of pavement layer and bearing capacity besides the seasonal and mechanical properties of pavement materials to take an appropriate and reasonable design of the road structure. In this paper, the evaluation of frost susceptibility on subgrade, ant-freezing layer, subbase was conducted by means of the mechanical characteristics and model experiment. The temperature, heaving amount, unfrozen water contents and freezing depth of soil samples, the subgrade, anti-freezing layer, subbase soils of road construction site were measured to determine the frost susceptibility.

Thermophysical Properties of the Soybean Curd and Prediction of its Thermal Conductivity 2. The 'intrinsic' thermal conductivity of soybean protein and prediction of the thermal conductivity of soybean curd (두부의 전열물성 및 유효열전도도의 추정 2. 대두단상질의 고유열전도도 측정과 두부의 유효열전도도의 추정)

  • KONG Jai-Yul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.3
    • /
    • pp.219-225
    • /
    • 1982
  • Four heat conduction models were examined for defatted soy-protein curds in order to get the 'intrinsic' thermal conductivity of soy-protein. As the result of examination, the 'intrinsic', thermal conductivities of soy-protein, frozen and unfrozen states, were determined on the basis of series model to be 0.488 W/m.K and 0.300 W/m.K, respectively. By using the 'intrinsic' thermal conductivity values of soybean protein and the series model, the effective thermal conductivity of soybean curds, with and without fat, at frozen and unfrozen states, was predicted satisfactorily, The temperature dependency of the effective thermal conductivity of soybean curd was mostly observed to correlate with the thermal conductivity of water and ice.

  • PDF

Experimental study on freezing point of saline soft clay after freeze-thaw cycling

  • Wang, Songhe;Wang, Qinze;Qi, Jilin;Liu, Fengyin
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.997-1004
    • /
    • 2018
  • The brine leakage is a tough problem in artificial freezing engineering. This paper takes the common soft clay in Wujiang District as the study object, and calcium chloride solutions with six salinity levels were considered. The 'classic' cooling curve method was employed to measure the freezing point of specimens after freeze-thaw. Results indicate that four characteristic stages can be observed including supercooling, abrupt transition, equilibrium and continual freezing, strongly dependent on the variation of unfrozen water content. Two characteristic points were found from the cooling curves, i.e., freezing point and initial crystallization temperature. A critical value for the former exists at which the increment lowers. The higher the saline content approximately linearly, lower the freezing point. In the initial five cycles, the freezing point increases and then stabilizes. Besides, the degree of supercooling was calculated and its correlations with water, salt and freeze-thaw cycles were noted. Finally, an empirical equation was proposed for the relationship of freezing point and three main factors, i.e., water content, saline content and freeze-thaw cycles. Comparison of calculated and measured data proves that it is reliable and may provide guidance for the design and numerical analysis in frozen soil engineering.

The Frost Heaving Characteristics of Subgrade Soils Using Laboratory Freezing System (실내동결시스템을 이용한 노상토의 동상 특성)

  • Shin, Eun-Chul;Ryu, Byung-Hyun;Park, Jeong-Jun
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.71-79
    • /
    • 2010
  • The influence of fines of the frost susceptibility of subgrade soils were established by laboratory freezing system test simulating closely the thermal conditions in the field. During the winter season, the climate is heavily influenced by the cold and dry continental high pressure. Because of siberian air mass, the temperature of January is $-6{\sim}-7^{\circ}C$ on average. This chilly weather generate the frost heaving by freezing the moisture of soil and damage potential of the road structure. In the freezing soil, the ice lenses increase the freeze portion of soil by absorbing the ground water with capillary action. However, the capillary characteristics differ from the sort of soil on the state of freezing condition. In the current design codes for anti-freezing layer, the thickness of anti freezing layer is calculated by freezing depth against the temperature condition. Therefore, they have a tendency of over-design and uniform thickness without the considerations of thermal stability, bearing capacity and frost susceptibility of materials. So, it is essential for studying the appropriateness and bearing capacity besides the seasonal and mechanical properties of pavement materials to take a appropriate and reasonable design of the road structure. In this Paper, the evaluation of frost susceptibility was conducted by means of the mechanical property test and laboratory freezing system apparatus. The temperature, heaving amount, heaving pressure and unfrozen water contents of soil samples, the subgrade soils of highway construction site, were measured to determine the frost susceptibility.