DOI QR코드

DOI QR Code

Evaluation of the Mechanical Characteristics of Frozen Sand, Considering Temperature and Confining Pressure Effects, in a Cryogenic Triaxial Compression Test

동결 삼축압축시험을 통한 동결 사질토의 온도 및 구속압력에 따른 역학적 특성 평가

  • Park, Sangyeong (Dept. of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Jung, Sanghoon (Plant Civil and Structural Team, Hyundai Engrg.) ;
  • Hwang, Chaemin (Dept. of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Choi, Hangseok (Dept. of Civil, Environmental and Architectural Engrg., Korea Univ.)
  • 박상영 (고려대학교 건축사회환경공학부) ;
  • 정상훈 (현대엔지니어링 플랜트토목설계팀) ;
  • 황채민 (고려대학교 건축사회환경공학부) ;
  • 최항석 (고려대학교 건축사회환경공학부)
  • Received : 2022.06.14
  • Accepted : 2022.07.18
  • Published : 2022.08.31

Abstract

Most studies have conducted cryogenic triaxial compression tests with frozen specimens prepared in a separate mold by one-directional freezing. This method has the potential to generate residual stress in a frozen specimen and cannot be adopted to simulate the application of the artificial ground freezing method in the field. Therefore, in this study, novel equipment and procedure for the cryogenic triaxial compression test were proposed to overcome the limitations of existing test methods. Therefore, the mechanical characteristics of frozen sand, considering the effect of temperature and confining pressure, were evaluated. As the freezing temperature decreased, the brittleness of frozen sand increased, and the strength increased due to a decrease in the unfrozen water content and an increase in the ice strength. A higher confining pressure resulted in an increase in interparticle friction and the pressure melting phenomenon, which caused strength reduction. Thus, it was found that the mechanical behaviors of frozen sand were simultaneously affected by both temperature and confining pressure.

대부분의 선행연구는 동결 삼축압축시험 수행 시, 몰드를 사용하여 시료를 조성하고 단방향으로 동결을 진행하였다. 이는 동결된 시료에 잔류응력이 발생할 가능성이 있기 때문에 인공동결공법이 적용된 지반을 모사하는데 한계가 있다. 본 연구에서는 기존 시험방법의 한계를 보완할 수 있는 시험장비 및 시험방법을 제안하고, 제안된 방법으로 온도 및 구속압력에 따른 동결 사질토의 역학적 특성을 평가하였다. 동결온도가 낮아질수록 동결 사질토는 취성이 증가하였고, 부동수분의 감소 및 얼음자체의 강도 증가로 인하여 강도가 증가하였다. 구속압력의 증가는 강도저감 효과를 발생시키는 압력융해 현상과 강도증진 효과를 발생시키는 흙 입자의 마찰력 증가 모두를 야기하였다. 이처럼 동결 사질토의 역학적 거동은 구속압력과 동결온도의 복합적인 영향을 받는 것으로 나타났다.

Keywords

Acknowledgement

본 연구는 한국연구재단의 지원(NRF-2019R1A2C2086647)으로 수행되었으며, 이에 깊은 감사를 드립니다.

References

  1. Andersland, O. B. and Ladanyi, B. (2003), "Frozen Ground Engineering", John Wiley & Sons.
  2. Baker, T. H. W. (1976), "Preparation of Artificially Frozen Sand Specimens", Division of Building Research, National Research Council.
  3. Bishop, A. W. and Henkel, D. J. (1962), "The Measurement of Soil Properties in the Triaxial Test", London, Edward Arnold.
  4. Burt, T. P. and Williams, P. J. (1976), "Hydraulic Conductivity in Frozen Soils", Earth Surface Processes, Vol.1, No.4, pp.349-360. https://doi.org/10.1002/esp.3290010404
  5. Chamberlain, E., Groves, C., and Perham, R. (1972), "The Mechanical behaviour of Frozen Earth Materials under High Pressure Triaxial Test Conditions", Geotechnique, Vol.22, No.3, pp.469-483. https://doi.org/10.1680/geot.1972.22.3.469
  6. Chang, X., Ma, W., and Wang, D. (2008), "Study on the Strength of Frozen Clay at High Confining Pressure", Frontiers of Earth Science in China, Vol.2, No.2, pp.240-242. https://doi.org/10.1007/s11707-008-0027-8
  7. Chen, L., Ming, F., Zhang, X., Wei, X., and Liu, Y. (2021), "Comparison of the Hydraulic Conductivity between Saturated Frozen and Unsaturated Unfrozen Soils", International Journal of Heat and Mass Transfer, 165, 120718.
  8. Da Re, G., Germaine, J. T., and Ladd, C. C. (2003), "Triaxial Testing of Frozen Sand: Equipment and Example Results", Journal of cold regions engineering, Vol.17, No.3, pp.90-118. https://doi.org/10.1061/(ASCE)0887-381X(2003)17:3(90)
  9. Hwang, B. and Cho, W. (2020), "Effects of Fine Contents on the Fracture Characteristics of Frozen Sand", Journal of the Korean Geotechnical Society, Vol.36, No.3, pp.25-36. https://doi.org/10.7843/KGS.2020.36.3.25
  10. Horiguchi, K. and Miller, R. D. (1980), "Experimental Studies with Frozen Soil in an "Ice Sandwich" Permeameter", Cold regions science and technology, Vol.3, No.2-3, pp.177-183. https://doi.org/10.1016/0165-232X(80)90023-3
  11. Kim, S. Y., Hong, W. T., Hong, S. S., Baek, Y., and Lee, J. S. (2016), "Unfrozen Water Content and Unconfined Compressive Strength of Frozen Soils According to Degree of Saturations and Silt Fractions", Journal of the Korean Geotechnical Society, Vol.32, No.12, pp.59-67. https://doi.org/10.7843/KGS.2016.32.12.59
  12. Ma, W., Wu, Z., Zhang, L., and Chang, X. (1999), "Analyses of Process on the Strength Decrease in Frozen Soils under High Confining Pressures", Cold Regions Science and Technology, Vol.29, No.1, pp.1-7. https://doi.org/10.1016/S0165-232X(98)00020-2
  13. Ming, F., Chen, L., Li, D., and Wei, X. (2020), "Estimation of Hydraulic Conductivity of Saturated Frozen Soil from the Soil Freezing Characteristic Curve", Science of the Total Environment, 698, 134132.
  14. Nassr, A., Esmaeili-Falak, M., Katebi, H., and Javadi, A. (2018), "A New Approach to Modeling the behavior of Frozen Soils", Engineering geology, 246, 82-90. https://doi.org/10.1016/j.enggeo.2018.09.018
  15. Parameswaran, V. R. and Jones, S. J. (1981), "Triaxial Testing of Frozen Sand", Journal of Glaciology, Vol.27, No.95, pp.147-155. https://doi.org/10.3189/S0022143000011308
  16. Park, S., Hwang, C., Choi, H., Son, Y., and Ko, T. Y. (2022), "Experimental Study for Application of the Punch Shear Test to Estimate Adfreezing Strength of Frozen Soil-structure Interface", Geomechanics and Engineering, Vol.29, No.3, pp.281-290. https://doi.org/10.12989/GAE.2022.29.3.281
  17. Shawn, P.C., Juan, L.P., and Michael, A.S. (2016), "Ground Freezing to Repair Leaks in a Slurry Wall Shaft", World Tunnel Congress, 1-10.
  18. Song, H., Cai, H., Yao, Z., Rong, C., and Wang, X. (2016), "Finite Element Analysis on 3D Freezing Temperaturefield in Metro Cross Passage Construction", Procedia Engineering, Vol.165, No.1, pp. 528-539. https://doi.org/10.1016/j.proeng.2016.11.729
  19. Song, J. Y., Lee, J., Lee, S. W., Lee, J., and Yun, T. S. (2018), "Evaluation of Freezing Patterns for Sand and Clay by Using X-ray CT", Journal of the Korean Geotechnical Society, Vol.34, No.3, pp.57-65. https://doi.org/10.7843/KGS.2018.34.3.57
  20. Standard, A. S. T. M. (2002), "Standard test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils", ASTM International.
  21. Sun, C. and Qiu, P. (2012), "Research on the Freezing Method Applied to Tunnel Cross Passage of the Guangzhoumetro", Modern Tunnelling Technology, Vol.49, No.3, pp.161-165. https://doi.org/10.3969/j.issn.1009-6582.2012.03.024
  22. Ting, J. M., Torrence Martin, R., and Ladd, C. C. (1983), "Mechanisms of Strength for Frozen Sand", Journal of Geotechnical Engineering, Vol.109, No.10, pp.1286-1302. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:10(1286)
  23. Tounsi, H., Rouabhi, A., Tijani, M., and Guerin, F. (2019), "Thermo-hydro-mechanical Modeling of Artificial Ground Freezing: Application in Mining Engineering", Rock Mechanics and Rock Engineering, Vol.52, No.10, pp.3889-3907. https://doi.org/10.1007/s00603-019-01786-9
  24. Williams, P. J. and Burt, T. P. (1974), "Measurement of Hydraulic Conductivity of Frozen Soils", Canadian Geotechnical Journal, Vol.11, No.4, pp.647-650. https://doi.org/10.1139/t74-066
  25. Xu, X., Li, Q., Lai, Y., Pang, W., and Zhang, R. (2019), "Effect of Moisture Content on Mechanical and Damage behavior of Frozen Loess under Triaxial Condition along with Different Confining Pressures", Cold regions science and technology, 157, pp.110-118. https://doi.org/10.1016/j.coldregions.2018.10.004
  26. Xu, X., Li, Q., and Xu, G. (2020), "Investigation on the behavior of Frozen Silty Clay Subjected to Monotonic and Cyclic Triaxial Loading", Acta Geotechnica, Vol.15, No.5, pp.1289-1302. https://doi.org/10.1007/s11440-019-00826-6
  27. Yang, Y., Lai, Y., and Chang, X. (2010a), "Laboratory and Theoretical Investigations on the Deformation and Strength behaviors of Artificial Frozen Soil", Cold regions science and technology, Vol.64, No.1, pp.39-45. https://doi.org/10.1016/j.coldregions.2010.07.003
  28. Yang, Y., Lai, Y., and Li, J. (2010b), "Laboratory Investigation on the Strength Characteristic of Frozen Sand Considering Effect of Confining Pressure", Cold regions science and technology, Vol.60, No.3, pp.245-250. https://doi.org/10.1016/j.coldregions.2009.11.003
  29. Zhang, S., Lai, Y., Sun, Z., and Gao, Z. (2007), "Volumetric Strain and Strength behavior of Frozen Soils under Confinement", Cold regions science and technology, Vol.47, No.3, pp.263-270. https://doi.org/10.1016/j.coldregions.2006.10.001
  30. Zhang, S., Du, H., and Harbor, J. (2017), "The Effect of Confining Pressure and Water Content on Compressive Strength and Deformation of Ice-rich Silty Sand", Permafrost and Periglacial Processes, Vol.28, No.1, pp.298-305. https://doi.org/10.1002/ppp.1906
  31. Zhao, X., Zhou, G., Chen, G., Shang, X., and Zhao, G. (2011), "Triaxial Compression Deformation for Artificial Frozen Clay with Thermal Gradient", Cold regions science and technology, Vol.67, No.3, pp.171-177. https://doi.org/10.1016/j.coldregions.2011.02.009