Browse > Article
http://dx.doi.org/10.7843/kgs.2012.28.5.85

Mechanical Constitutive Model for Frozen Soil  

Shin, Ho-Sung (Dept. of Civil & Environmental Engrg., University of Ulsan)
Kim, Ji-Min (Dept. of Civil & Environmental Engrg., University of Ulsan)
Lee, Jang-Guen (KICT)
Lee, Seung-Rae (Dept. of Civil & Environmental Engrg., KAIST)
Publication Information
Journal of the Korean Geotechnical Society / v.28, no.5, 2012 , pp. 85-94 More about this Journal
Abstract
Recently, growing interests in frozen ground have stimulated us to advance fundamental theories and systematic researches on soil behavior under freezing conditions. Unlike the well-established soil mechanics theory, temperature variation and phase change of pore-water cause water migration to cold side, ground heaving, sharp increase in earth pressure, etc., which bring about serious problems in frozen geotechnical structures. Elasto-plastic mechanical constitutive model for frozen/unfrozen soil subjected to fully coupled THM phenomena is formulated based on a new stress variable that is continuous in frozen-unfrozen transitional regions. Numerical simulations are conducted to discuss numerical reliability and applicability of the developed constitutive model: one-dimensional heaving pressure, tri-axial compression test, and one-side freezing tests. The numerical results show that developed model can efficiently describe complex THM phenomena of frozen soil, and they can be utilized to analyze and design the geotechnical structures under freezing conditions, and predict their long-term behavior.
Keywords
Frozen soil; Heaving pressure; Mechanical constitutive model; THM coupling;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Shin, E. C., Ryu, B. H., Park, J. J. (2010), "The Freezing Characteristics of Pavement Layer Using the Field Road Model Test", Journal of Korean Geotechnical Society, Vol.26, No.7, pp.71-80.
2 Shin, H. (2011), "Formulation of Fully Coupled THM Behavior in Unsaturated soil", Journal of Korean Geotechnical Society, Vol.27, No.3, pp.75-83.
3 Taber, S. (1929), "Frost heaving", Journal of Geology, Vol.37, No.5, pp.428-461.   DOI
4 Tan, X., Chen, W., Tian, H., Cao, J. (2011), "Water flow and heat transport including ice/water phase change in porous media: Numerical simulation and application", Cold Regions Sci. and Tec., Vol.68, pp.74-84.   DOI   ScienceOn
5 Terzaghi, K. (1936), "The shear resistance of saturated soils", Proceedings for the 1st .International Conference on Soi lMechanics and Foundation Engineering, Cambridge, MA, pp.54-56.
6 Thomas, H. R., Cleall, P., Li, Y. C., Harris, C., and Kern-Luetschg, M. (2009), "Modelling of cryogenic processes I permafrost and seasonally frozen soil", Geotechnique, Vol.59, No.3, pp.173-184.   DOI   ScienceOn
7 Ting, J. M. (1981), "The creep of Sand: Qualitative and Quantitative Models", Res. Rep, pp.81-85.
8 Ting, J. M., Martin, R. T., and Ladd, C. C. (1983), "Mechanisms of strength for frozen sand", J. Geotech. Eng. ASCE, Vol.109, No.10, pp.1181-1185.   DOI
9 Van Genuchten, M. Th. (1980), "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils", Soil science society of America journal, Vol.44, pp.892-898.   DOI   ScienceOn
10 Konrad, J. M. (1999), "Frost susceptibility related to soil index properties", Can. Geotech. J., Vol.36, pp.403-417.   DOI   ScienceOn
11 Liu, Z., Yu, X. (2011), "Coupled thermo-hydro-mechanical model for porous materials under frost action: theory and implementation", Acta. Geotechnica., Vol.6, pp.51-65.   DOI
12 Painter S. L. (2011), "Three-phase numerical model of water migration in partially frozen geological media: model formulation, validation, and applications", Comput. Geosci., Vol.15, pp.69-85.   DOI
13 Mageau, D. W., Morgenstern, N. R. (1980), "Observations on moisture migration in frozen soils", Can. Geotech. J., Vol.17, No.1, pp.54-60.   DOI   ScienceOn
14 Michalowski, R. L., Zhu, M. (2006), "Frost heave modelling using porosity rate function", Int. J. Numer. Anal. Meth. Geomech., Vol.30, pp.703-722.   DOI   ScienceOn
15 Nishimura, S., Gens, A., Olivella, S. and Jardine, R. J. (2009), "THM-coupled finite element analysis of frozen soil: formulation and application", Geotechnique, Vol.59, No.3, pp.159-171.   DOI   ScienceOn
16 Phillips, R., Clark, J. I., and Hanke, R. (2002), "Pipeline frost heave modeling", Proc. Int. Conf. on physical modeling in geotechnics, St John's, NL, pp.313-318.
17 Sheng, D., Gens, A., Fredlund, D. G., and Sloan, S. W. (2008), "Unsaturated soils: From constitutive modelling to numerical algorithms", Computers and Geotechnics, Vol.35, pp.810-824.   DOI   ScienceOn
18 Shin, E. C., Kang, J. G., Park, J. J. (2009), "Thermal Stability in Underground Structure with Ground Freezing", Journal of Korean Geotechnical Society, Vol.25, No.3, pp.65-74.
19 Shin, E. C., Park, J. J. (2003), "An Experimental Study on Frost Heaving Pressure Characteristics of Frozen Soils", Journal of Korean Geotechnical Society, Vol.19, No,2, pp.65-74.
20 Arvidson, W. D., Morgenstern, N. R. (1977), "Water flow induced by soil freezing", Can.Geotech. J., Vol.14, pp.237-245.   DOI   ScienceOn
21 Andersland, O. B., Ladanyi, B. (2004), "Frozen Ground Engineering", John wiley과 Sons.
22 Kang, J. M., Kim, H. S. (2009b), "An Study on Efficiency and Application of Thermal Siphon in the Permafrost", International Symposium on Urban Geotechnics, pp.963-966.
23 Alonso, E. E., Gens, A., and Josa, A. (1990), "A constitutive model for partly saturated soils", Geotechnique, Vol.40, No.3, pp.405-430.   DOI
24 Hansson, K., Simunek, J., Mizoguchi, M., Lundin, L. C., and van Genuchten, M. Th. (2004), "Water flow and heat transport in frozen soil: Numerical solution and freeze-thaw applications", Vadosezonej., Vol.3, pp.693-704.
25 Hoekstra, P. (1966), "Moisture movement in soils under temperature gradients with the cold-side temperature below freezing", Water Resour. Res., Vol.2, No.2, pp.241-250.   DOI
26 Henry, K. S. (2000), "A review of the thermodynamics of frost heave", CRREL, US Army Corps of Engineers.
27 Kang, J. M., Kim, H. S., Hong, S. S., Kim, Y. S. (2009a), "A fundamental study on behavior of pipeline during ground freezing in Vladivostok site, Russia", Korean Geo-Environmental conference, pp.254-257.
28 Kim, Y. J. (2003), "An Experimental Study on the Waste Polyethylene Aggregate for Construction Materials", Journal of Korean Geo-Environmental Society, Vol.4, No.4, pp.5-16.
29 Kim, Y. S., Kang, J. M., Hong, S. S., Kim, K. J. (2010), "Heat Transfer Equation and Finite Element Analysis Considering Frozen Ground Condition the Cyclic Loading", J. Korean Geosyn the tics Society Vol.9 No.3, pp.39-45.
30 Konrad, J. M., Morgenstern, N. R., (1981), "The segregation potential of a freezing soil", Can. Geotech. J., Vol.18, pp.482-491.   DOI   ScienceOn
31 Konrad, J. M., Morgenstern, N. R., (1982), "Effects of applied pressure on freezing soils", Can. Geotech. J., Vol.19, pp.494-505.   DOI   ScienceOn