• 제목/요약/키워드: unfolded protein response

검색결과 75건 처리시간 0.025초

[ ${\alpha}$ ]Synuclein Induces Unfolded Protein Response Via Distinct Signaling Pathway Independent of ER-membrane Kinases

  • Kang, Shin-Jung;Shin, Ki-Soon;Kim Kwon, Yun-Hee
    • Animal cells and systems
    • /
    • 제10권3호
    • /
    • pp.115-120
    • /
    • 2006
  • Parkinson's disease (PD) is a neurodegenerative disease caused by selective degeneration of dopaminergic neurons in the substantia nigra. Mutations in ${\alpha}$-synuclein have been causally linked to the pathogenesis of hereditary PD. In addition, it is a major component of Lewy body found in the brains of sporadic cases as well. In the present study, we examined whether overexpression of wild type or PD-related mutant ${\alpha}$-synuclein induces unfolded protein response (UPR) and triggers the known signaling pathway of the resulting endoplasmic reticulum (ER) stress in SH-SY5Y cells. Overexpression of wild type, A30P, and A53T ${\alpha}$-synuclein all induced XBP-1 mRNA splicing, one of the late stage UPR events. However, activation of ER membrane kinases and upregulation of ER or cytoplsmic chaperones were not detected when ${\alpha}$-synuclein was overexpressed. However, basal level of cytoplsmic calcium was elevated in ${\alpha}$-synuclein-expressing cells. Our observation suggests that overexpression of ${\alpha}$-synuclein induces UPR independent of the known ER membrane kinase-mediated signaling pathway and induces ER stress by disturbing calcium homeostasis.

Endoplasmic reticulum stress in periimplantation embryos

  • Michalak, Marek;Gye, Myung Chan
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제42권1호
    • /
    • pp.1-7
    • /
    • 2015
  • Stress coping mechanisms are critical to minimize or overcome damage caused by ever changing environmental conditions. They are designed to promote cell survival. The unfolded protein response (UPR) pathway is mobilized in response to the accumulation of unfolded proteins, ultimately in order to regain endoplasmic reticulum (ER) homeostasis. Various elements of coping responses to ER stress including Perk, Ask1, Bip, Chop, Gadd34, Ire1, Atf4, Atf6, and Xbp1 have been identified and were found to be inducible in oocytes and preimplantation embryos, suggesting that, as a normal part of the cellular adaptive mechanism, these coping responses, including the UPR, play a pivotal role in the development of preimplantation embryos. As such, the UPR-associated molecules and pathways may become useful markers for the potential diagnosis of stress conditions for preimplantation embryos. After implantation, ER stress-induced coping responses become physiologically important for a normal decidual response, placentation, and early organogenesis. Attenuation of ER stress coping responses by tauroursodeoxycholate and salubrinal was effective for prevention of cell death of cultured embryos. Further elucidation of new and relevant ER stress coping responses in periimplantation embryos might contribute to a comprehensive understanding of the regulation of normal development of embryonic development and potentiation of embryonic development in vitro.

HepG2 세포에서 까마귀쪽나무 과육 열수 추출물의 소포체 스트레스 억제 효능 (Inhibitory Effects of Litsea japonica Flesh Water Extract against Endoplasmic Reticulum Stress in HepG2 Cells)

  • 김은옥;제갈경환;김재광;이주상;박정아;김상찬;조일제
    • 대한한의학방제학회지
    • /
    • 제26권4호
    • /
    • pp.307-318
    • /
    • 2018
  • Objectives : Endoplasmic reticulum (ER) stress designates cellular responses to the accumulation of misfolded and unfolded proteins in ER, which is related to a variety of liver diseases. Present study investigated the inhibitory effects of Litsea japonica flesh water extract (LJE) aganist ER stress. Methods : After HepG2 cells were pretreated with LJE and subsequently exposed to tunicamycin (Tm) or thapsigargin (Tg), expression of C/EBP homologous protein (CHOP), glucose regulated protein 78 kDa (GRP78), asparagine synthetase (ASNS), and endoplasmic reticulum DnaJ homologue 4 (ERDJ4) were determined by immunoblot and real-time PCR analysis. Three canonical signaling pathways in response to ER stress were examined to explore molecular mechanisms involved. Results : Pretreatment of 1 mg/mL LJE inhibited Tm- or Tg-induced CHOP expression, while L. japonica fruit water extract did not. In addition, LJE decreased the levels of GRP78, ASNS, and ERDJ4 mRNA by Tm. Moreover, phosphorylations of eukaryotic translation initiation factor $2{\alpha}$ and inositol-requiring enzyme 1, expression of nuclear form of activating transcription factor $6{\alpha}$, and transactivation of ER stress response element- and unfolded protein response element-harboring luciferase activities were inhibited by LJE pretreatment. Conclusions : Present results suggest that LJE would be a candidate to prevent or treat ER stress-mediated liver injuries.

Isolation of Differentially Expressed Genes in Bm5 Cell Line Induced with Tunicamycin for Studies of Unfolded Protein Response (UPR)

  • Kim, Sung-Wan;Yun, Eun-Young;Goo, Tae-Woo;Hwang, Jae-Sam;Kang, Seok-Woo;Kwon, O-Yu
    • 한국잠사학회:학술대회논문집
    • /
    • 한국잠사학회 2003년도 International Symposium of Silkworm/Insect Biotechnology and Annual Meeting of Korea Society of Sericultural Science
    • /
    • pp.91-92
    • /
    • 2003
  • For studies of unfolded protein response (UPR), we isolated differentially expressed genes in Bm5 cell line induced with treatment of tunicamycin, the synthesis inhibitor of N-linked oligosaccharides in cells and constructed the subtractive cDNA library enriching UPR-related genes. (omitted)

  • PDF

Laminar Flow Inhibits ER Stress-Induced Endothelial Apoptosis through PI3K/Akt-Dependent Signaling Pathway

  • Kim, Suji;Woo, Chang-Hoon
    • Molecules and Cells
    • /
    • 제41권11호
    • /
    • pp.964-970
    • /
    • 2018
  • Atherosclerosis preferentially involves in prone area of low and disturbed blood flow while steady and high levels of laminar blood flow are relatively protected from atherosclerosis. Disturbed flow induces endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). ER stress is caused under stress that disturbs the processing and folding of proteins resulting in the accumulation of misfolded proteins in the ER and activation of the UPR. Prolonged or severe UPR leads to activate apoptotic signaling. Recent studies have indicated that disturbed flow significantly up-regulated $p-ATF6{\alpha}$, $p-IRE1{\alpha}$, and its target spliced XBP-1. However, the role of laminar flow in ER stress-mediated endothelial apoptosis has not been reported yet. The present study thus investigated the role of laminar flow in ER stress-dependent endothelial cell death. The results demonstrated that laminar flow protects ER stress-induced cleavage forms of PARP-1 and caspase-3. Also, laminar flow inhibits ER stress-induced $p-eIF2{\alpha}$, ATF4, CHOP, spliced XBP-1, ATF6 and JNK pathway; these effects are abrogated by pharmacological inhibition of PI3K with wortmannin. Finally, nitric oxide affects thapsigargin-induced cell death in response to laminar flow but not UPR. Taken together, these findings indicate that laminar flow inhibits UPR and ER stress-induced endothelial cell death via PI3K/Akt pathway.

부동스트레스에 의한 소포체스트레스반응 조절 (Regulation of Endoplasmic Reticulum Stress Response by the Immobilization Stress)

  • 권기상;권영숙;김승환;김동운;권오유
    • 생명과학회지
    • /
    • 제22권8호
    • /
    • pp.1132-1136
    • /
    • 2012
  • 많은 종류의 세포스트레스는 unfolded protein response (UPR)관련인자의 유전자발현을 조절한다. 본 연구결과 부동스트레스(immobilization stress)는 세포의 소포체스트레스(ER stress)와 관련된 유전자발현의 변화를 유도한다; Heart, spleen, thymus, kidney, testis에서는 유전자발현 변화가 없었지만 adrenal gland, liver, lung에서는 유의할만한 상승변화가 있었다. 그러나 muscle에서는 다른 것들과 대조적으로 발현이 감소되었다. 이 결과는 부동스트레스도 다른 종류의 세포스트레스와 같이 세포수준에서 UPR을 조절할 수 있다는 최초의 보고이다.

Effect of Exercise Intensity on Unfolded Protein Response in Skeletal Muscle of Rat

  • Kim, Kihoon;Kim, Yun-Hye;Lee, Sung-Hye;Jeon, Man-Joong;Park, So-Young;Doh, Kyung-Oh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권3호
    • /
    • pp.211-216
    • /
    • 2014
  • Endoplasmic reticulum (ER) stress, unfolded protein response (UPR), and mitochondrial biogenesis were assessed following varying intensities of exercise training. The animals were randomly assigned to receive either low- (LIT, n=7) or high intensity training (HIT, n=7), or were assigned to a control group (n=7). Over 5 weeks, the animals in the LIT were exercised on a treadmill with a $10^{\circ}$ incline for 60 min at a speed of 20 m/min group, and in the HIT group at a speed of 34 m/min for 5 days a week. No statistically significant differences were found in the body weight, plasma triglyceride, and total cholesterol levels across the three groups, but fasting glucose and insulin levels were significantly lower in the exercise-trained groups. Additionally, no statistically significant differences were observed in the levels of PERK phosphorylation in skeletal muscles between the three groups. However, compared to the control and LIT groups, the level of BiP was lower in the HIT group. Compared to the control group, the levels of ATF4 in skeletal muscles and CHOP were significantly lower in the HIT group. The HIT group also showed increased PGC-$1{\alpha}$ mRNA expression in comparison with the control group. Furthermore, both of the trained groups showed higher levels of mitochondrial UCP3 than the control group. In summary, we found that a 5-week high-intensity exercise training routine resulted in increased mitochondrial biogenesis and decreased ER stress and apoptotic signaling in the skeletal muscle tissue of rats.

Identification of HUGT1 as a Potential BiP Activator and a Cellular Target for Improvement of Recombinant Protein Production Using a cDNA Screening System

  • Ku, Sebastian Chih Yuan;Lwa, Teng Rhui;Giam, Maybelline;Yap, Miranda Gek Sim;Chao, Sheng-Hao
    • Molecules and Cells
    • /
    • 제27권5호
    • /
    • pp.577-582
    • /
    • 2009
  • The development of a high-throughput functional genomic screening provides a novel and expeditious approach in identifying critical genes involved in specific biological processes. Here we describe a cell-based cDNA screening system to identify the transcription activators of BiP, an endoplasmic reticulum (ER) chaperone protein. BiP promoter contains the ER stress element which is commonly present in the genes involved in unfolded protein response (UPR) that regulates protein secretion in cells. Therefore, the positive regulators of BiP may also be utilized to improve the recombinant protein production through modulation of UPR. Four BiP activators, including human UDP-glucose:glycoprotein glucosyltransferase 1 (HUGT1), are identified by the cDNA screening. Overexpression of HUGT1 leads to a significant increase in the production of recombinant erythropoietin, interferon ${\gamma}$, and monoclonal antibody in HEK293 cells. Our results demonstrate that the cDNA screening for BiP activators may be effective to identify the novel BiP regulators and HUGT1 may serve as an ideal target gene for improving the recombinant protein production in mammalian cells.

소포체스트레스 센서 OASIS family의 분자기전 (Molecular Mechanism of Endoplasmic Reticulum Stress Transducer OASIS Family)

  • 권기상;김승환;유권;권오유
    • 생명과학회지
    • /
    • 제25권4호
    • /
    • pp.473-480
    • /
    • 2015
  • 진핵세포의 소포체는 분비를 담당하는 첫 번째 기관이다. 대부분의 분비단백질과 막 형성단백질은 소포체에서 세포질/핵으로 전달되는 신호전달에 의한 번역후수식에 의해서 소포체를 통해서 분비된다. 그 결과 완전하게 접 힘이 일어난 단백질만 세포 밖으로 분비된다. 소포체내에서 완전하게 접힘이 일어나지 않아 축적된 단백질은 세 포내스트레스(소포체스트레스)가 되어 unfolded protein response (UPR)시스템을 작동시킨다. UPR을 작동시키는 3종류의 소포체막단백질은 inositol requiring 1 (IRE1), PKR-like ER kinase (PERK), activating transcription factor 6 (ATF6)이 존재한다. 최근에 새로운 종류의 ATF6이 동정되었다. 이들은(Luman, OASIS, BBF2H7, CREBH, CREB4) 공통적으로 소포체막관통영역, 전사활성영역, bZIP영역을 가지며 특이조직과 세포내기관에서 기능을 가 진다. 현재로서는 OASIS family의 정확한 분자기전 설명은 어렵지만, 본 리뷰에서 이들 분자신호를 포괄적으로 소개할 것이다

ER stress and unfolded protein response (UPR) signaling modulate GLP-1 receptor signaling in the pancreatic islets

  • Yurong Gao;Hanguk Ryu;Hyejin Lee;Young-Joon Kim;Ji-Hye Lee;Jaemin Lee
    • Molecules and Cells
    • /
    • 제47권1호
    • /
    • pp.100004.1-100004.11
    • /
    • 2024
  • Insulin is essential for maintaining normoglycemia and is predominantly secreted in response to glucose stimulation by β-cells. Incretin hormones, such as glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide, also stimulate insulin secretion. However, as obesity and type 2 diabetes worsen, glucose-dependent insulinotropic polypeptide loses its insulinotropic efficacy, whereas GLP-1 receptor (GLP-1R) agonists continue to be effective owing to its signaling switch from Gs to Gq. Herein, we demonstrated that endoplasmic reticulum (ER) stress induced a transition from Gs to Gq in GLP-1R signaling in mouse islets. Intriguingly, chemical chaperones known to alleviate ER stress, such as 4-PBA and TUDCA, enforced GLP-1R's Gq utilization rather than reversing GLP-1R's signaling switch induced by ER stress or obese and diabetic conditions. In addition, the activation of X-box binding protein 1 (XBP1) or activating transcription factor 6 (ATF6), 2 key ER stress-associated signaling (unfolded protein response) factors, promoted Gs utilization in GLP-1R signaling, whereas Gq employment by ER stress was unaffected by XBP1 or ATF6 activation. Our study revealed that ER stress and its associated signaling events alter GLP-1R's signaling, which can be used in type 2 diabetes treatment.