• Title/Summary/Keyword: undulation

Search Result 105, Processing Time 0.033 seconds

Meso-scale model for calculating the stiffness of filament wound composites considering fiber undulations

  • Shen, Chuangshi;Han, Xiaoping
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.273-279
    • /
    • 2017
  • A meso-scale model is proposed to study filament-wound composites with fiber undulations and crossovers. First, the crossover and undulation region is classified as the circumferential undulation and the helical undulation. Next, the two undulations are separately regarded as a series of sub-models to describe the meso-structure of undulations by using meso-parameters such as fiber orientation, fiber inclination angle, resin rich area, fiber volume fraction and bundle cross section. With the meso-structure model and the classic laminate theory, a method for calculating the stiffness of filament wound composites is eventually established. The effects of the fiber inclination angle, the fiber and resin volume fraction and the resin rich area on the stiffness are studied. The numerical results show that the elastic moduli for the circumferential undulation region decrease to a great extent as compared with that of the helical undulation region. Moreover, significant decrease in the elastic and shear moduli and increase in the Poisson's ratio are also found for the resin rich area. In addition, thickness and bundle section have evident effect on the equivalent stiffness of the fiber crossover and the undulation region.

Buckling analysis of filament wound composite cylindrical shell for considering the filament undulation and crossover

  • Guo, Zhangxin;Han, Xiaoping;Guo, Meiqing;Han, Zhijun
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.399-411
    • /
    • 2015
  • The buckling equations of filament wound composite cylindrical shell are established. The coefficients $K_{ij}$ and $L_{ij}$ of the buckling equations are determined by solving the equations. The geometric analysis and the effective stiffness calculation for the fiber crossover and undulation region are respectively accomplished. Using the effective stiffness of the undulation region, the specific formulas of the coefficients ${K^{\prime}}_{ij}$ and ${L^{\prime}}_{ij}$ of the buckling equations are determined. Numerical examples of the buckling critical loads have been performed for the different winding angles and stacking sequences cylindrical shell designs. It can be concluded that the fiber undulation results in the less effect on the buckling critical loads $P_{cr}$. $P_{cr}$ increases with the thickness-radius ratio. The effect on $P_{cr}$ due to the fiber undulation is more obvious with the thickness-radius ratio. $P_{cr}$ decreases with the length-radius ratio. The effect on $P_{cr}$ due to the fiber undulation can be neglected when the ratio is large.

INTERACTION OF SURFACE WATER WAVES WITH SMALL BOTTOM UNDULATION ON A SEA-BED

  • Martha, S.C.;Bora, S.N.;Chakrabarti, A.
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1017-1031
    • /
    • 2009
  • The problem of interaction of surface water waves by small undulation at the bottom of a laterally unbounded sea is treated on the basis of linear water wave theory for both normal and oblique incidences. Perturbation analysis is employed to obtain the first order corrections to the reflection and transmission coefficients in terms of integrals involving the shape function c(x) representing the bottom undulation. Fourier transform method and residue theorem are applied to obtain these coefficients. As an example, a patch of sinusoidal ripples is considered in both the cases as the shape function. The principal conclusion is that the reflection coefficient is oscillatory in the ratio of twice the surface wave number to the wave number of the ripples. In particular, there is a Bragg resonance between the surface waves and the ripples, which is associated with high reflection of incident wave energy. The theoretical observations are validated computationally.

  • PDF

Field Observation and Numerical Modeling for Secondary Undulation (항만 부진동에 관한 현장관측 및 수치실험)

  • 김규한;김덕중;배기성
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.27-31
    • /
    • 2002
  • The purpose of this study is to investigate the variation of resonance that is possible caused by construction of new port in a practical sea area between the existing port and the new one. The research of amplification that of the sea area was accomplished for the variation of resonance. In this study, long period wave that is observed continuously in the practical sea area was analyzed, and then secondary undulation was reproduced by numerical analysis. As a result of numerical analysis, the first mode resonant periods in the existing port is 640sec, and in the new one is 500sec. On the other hand, we know there is long period wave of 500sec from analyzation of field datas. Because that period this period is the resonant period in the new port. There is also the possibility of secondary undulation cause of resonant.

A STUDY ON THE MOHO UNDULATION OF THE KOREAN PENINSULA FROM SATELLITE GRAVITY DATA

  • Yu, Sang-Hoon;Hwang, Jong-Sun;Min, Kyung-Duck
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.589-592
    • /
    • 2005
  • Gravity characteristics and Moho undulations are investigated in the Korean peninsula by using satellite gravity data. According to the development of satellite geodesy, gravity potential models which have high accuracy and resolution were released. Using the EIGEN-CGOIC model based on low orbit satellite data such as CHAMP and GRACE, geoid and gravity anomaly were calculated by spherical harmonic analysis. The study area is located at $123^{\circ}\sim132^{\circ}E, 33^{\circ}\sim43^{\circ}$N including Korea. Free-air anomalies, which show the effect of terrain, have the values between $-37\sim724 mgal. After Bouguer correction, the range of simple Bouguer anomalies is $-221\sim246$ mgal. Complete Bouguer anomalies after terrain correction increase from continent to marine. This phenomenon is related rise of Moho discontinuity. The cut-frequency for extraction of Moho undulation was determined by power spectrum analysis, and then 3D inversion modeling was implemented. The mean, maximum, minimum, and standard deviation of Moho depth undulation are -26, -36, -8, and 4.9 krn, respectively.

  • PDF

A Study on the Selection of the Optimum Route Considering on the Shortest Distance and the Balance of Earthwotk Volume in DTM (DTM에서 최단노선과 토공량을 고려한 최적노선의 선정에 관한 연구)

  • 조규전;조영호;임선일
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.12 no.2
    • /
    • pp.219-226
    • /
    • 1994
  • When a route is planned, the distance of route and earthwork volume have an important role as an economic factor. In this paper, an investigation is made on the selection of optimum route with respect to two factors above mentioned. For this investigation, a numerical test is also executed to two different types of terrain, i.e. terrain with constant slope and no undulation and terrain with slope and undulation. The results show that the shortest route is determined by the degree of undulation with no relation to the slope of topographic model, and the earthwork volume is affected by the amount of undulation and interpolation function.

  • PDF

A Study on the Geoid Modeling by Gravimetric Methods and Methods of Satellite Geodesy (중력학적 방법 및 위성측지 방법에 의한 지오이드 모델링에 관한 연구)

  • 이석배
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.4
    • /
    • pp.359-367
    • /
    • 2000
  • This paper suggests that coefficients models of the Earth's gravitational potential can be used to calculate height anomalies which are then reduced to the geoid undulation to determine more precise geoid undulation. The potential coefficients and modified coefficients of EGM96 and KODEM33 digital elevation model in and around the Korean peninsula were used for this study. The magnitude of height anomaly computed in this study reached 0.025 m and the mean vaule showed -0.015 m. In this study, geometrical geoid undulation was derived from GPS/Leveling data for evaluating the precisely computed geoid undulation. In comparison with geometric and gravimetric geoid undulations, mean value and standard deviation of the differences showed 0.0114 m and 0.2817 m respectively and it showed the improvement of results.

  • PDF

Effectiveness of Wave Resonator for Secondary Undulation under Real Sea Conditions (실해역에서 공진장치를 이용한 부진동의 제어)

  • Jeong, Jin-Woo;Kim, Do-Sam;Park, Jong-Bae;An, Sung-Wook
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.51-60
    • /
    • 2010
  • In this study, the performance evaluation of a conventional wave resonator at the entrance of a port or a pier against secondary undulation has been performed using 2D hydrodynamic modeling within port. A wave resonator has been designed for the attenuation of the secondary undulation induced by the long-periodic waves. The controlled performance of the wave resonator has been numerically investigated for CGWAVE MODULE of finite-element model of SMS (Surface water Modeling System) based on the elliptic mild-slope wave equation. SMS was verified though the comparisons with analytical solution performed by Ippen and Goda (1963). Also, It was confirmed that a wave resonator of a rectangular model harbor is effective enough to control the secondary undulation when it compares variation of water level with the case of no resonance system. From the above results, amplification phenomenon induced by long-period waves transferred from 1900 sec to 2100 sec when it applied a wave resonator in Busan Gamcheon Port which is a deep-sea. And it was confirmed that a wave resonator of Pohang New Port attenuates largely long-period waves which are within the range of 300 sec induced by long-period motion of the moored ship.

Geometric Geoid Determination in South Korea using GPS/Levelling Data

  • Yun, Hong-Sic
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.2
    • /
    • pp.285-289
    • /
    • 1995
  • This paper describes the determination of geoid using height data measured by GPS and Spirit Levelling. The GPS data of the 88 stations were used to determine the geoid undulation (N) which can be easily obtained by subtracting the orthometric height(H) from the ellipsoidal height(h). From the geoid undulation (N) calculated at each station mentioned above, geoid plots with a contour interval of 0.25 m were drawn using two interpolation methods. The following interpolation methods were applied and compared with each other: Minimum Curvature Method and Least Squares Fitted Plane. Comparison between geometric geoid and gravimetric geoid undulation by FFT technique was carried out.

  • PDF

Application of Wave Resonator to the Field for Controlling Secondary Undulation (부진동의 제어를 위한 공진장치의 현장적용)

  • Lee, Kwang-Ho;Beom, Seong-Sim;Kim, Do-Sam;Choi, Nack-Hoon;Park, Jong-Bae;An, Seong-Wook
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.1
    • /
    • pp.58-65
    • /
    • 2012
  • In this study, to reduce the motion of the vessels resulting from resonance and secondary undulation by long-period waves, numerical review on the control performance of resonator was carried out by attaching the resonator to the established harbor of real waters. In the numerical analysis, CGWAVE MODULE of commercial software SMS(Surface water Modeling System), a finite element model based on 2-dimensional elliptical mild slope equation was applied, and through comparative analysis of the existing experiments and analysis results on the rectangular model ports, the validity of the friction coefficients in which validity and effectiveness of SMS on the secondary undulation analysis is applied was verified. Based on this, the control performance of resonator was confirmed through comparative review of the secondary undulation according to whether or not to attach the resonator to rectangular harbor. In addition, to reduce long-period motion of the moored vessels and the secondary undulation which may occur in Pohang new port, the method to move the resonant period which causes abnormal motion of the vessels to long-term one was discussed through application of the resonators with various sizes, thereby identifying the availability.