• 제목/요약/키워드: undrained triaxial compression tests

검색결과 65건 처리시간 0.024초

이방압밀이 흙의 강도에 미치는 영향 (Effects of Anisotropic Consolidation on Strength of Soils)

  • 강병희
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.3-14
    • /
    • 2000
  • Anisotropic consolidation, shear, a transportational component during or after deposition each may produce anisotropic fabrics, which result in the anisotropic properties of soils. Nevertheless, the isotropically consolidated compression triaxial tests are commonly used in practice to determine the strength of the anisotropically consolidated soils because of their practicality and simplicity. In this paper the effects of anisotropic consolidation on the strength properties of soils are discussed. For the sandy soils consolidated under a constant vertical consolidation pressure, the deformation modulus decreases with decreasing consolidation pressure ratio($\sigma$$\sub$3c/'/$\sigma$ sub 1c/'), but the liquefaction resistance increases. For the saturated cohesive soils, both the undrained shear strength and undrained creep strength decrese with decreasing the consolidation pressure ratio. When the in-situ strength properties of the anisotropically and normally consolidated soils are determined by the isotropically consolidated tests, the undrained shear strength and creep strength of saturated cohesive soils as well as the deformation modulus of sandy soils are measured to be higher than the rear in-situ values. This, therefore, could lead to a dangerous judgement in stability analysis

  • PDF

Liquefaction Behaviour and Prediction of Deviator Stress for Unsaturated Silty Sand

  • Lee, Dal-Won
    • 한국농공학회논문집
    • /
    • 제48권7호
    • /
    • pp.35-43
    • /
    • 2006
  • This study was carried out to investigate the liquefaction behaviour and predict deviator stress with matric suction, of unsaturated silty sand. The unsaturated soil tests were conducted using a modified triaxial cell and specimens were prepared using the moisture tamping method. The axis translation technique was used to create the desired matric suctions in the specimen. Undrained triaxial compression tests were carried out at matric suction of 0, 2, 5, 10 and 25 kPa. The specimens were sheared to axial strains of about 20% to obtain steady state conditions. The results showed that liquefaction of silty sand only occurs at matric suction of 0 kPa and 2 kPa. The results also show that at matric suctions of 5, 10 and 25 kPa, the resistance to liquefaction increases. As the suction increases, the undrained effective stress path approached the drained stress path. Also, the predicted and measured maximum deviator stress for unsaturated soils using the effective stress concept showed good agreement as matric suction increases. The deviator stress increase is nonlinear as matric suction increases.

정적하중 상태에서 포화된 실트질 모래의 액상화 거동 (Liquefaction Behaviour of Saturated Silty Sand Under Monotonic Loading Conditions)

  • 이달원
    • 한국농공학회논문집
    • /
    • 제48권4호
    • /
    • pp.67-74
    • /
    • 2006
  • This study was carried out to investigate the liquefaction behaviour of saturated silty sand under monotonic loading conditions. The undrained soil tests were conducted using a modified triaxial cell and specimens were prepared using the moisture tamping method. Undrained triaxial compression tests were performed at different confining pressures, void ratios and overconsolidation ratios and the samples were sheared to axial strains of about 20% to obtain monotonic loading conditions. It is shown that increasing confining pressures, void ratios and overconsoildation ratios increases the deviator stress, but it has no effect on increasing the dilatant tendencies. It is shown that complete static liquefaction was observed regardless of increases in the confining pressure, void ratio and overconsolidation ratio. Therefore, the confining pressure, void ratio and overconsoildation ratio does not provide significant effects on the liquefaction resistance of the silty sand. The presence of fines in the soil was shown to greatly increase the potential for static liquefaction and creates a particle structure with high compressibility for all cases.

실트질 해사의 역학적 특성 및 거동에 관한 연구 (Strength Characteristics and their Behaviours of Marine Silty Sands)

  • 장병욱;송창섭;우철웅
    • 한국농공학회지
    • /
    • 제36권3호
    • /
    • pp.74-83
    • /
    • 1994
  • A series of isotropic consolidation tests, undrained and drained triaxial compression tests was carried out to investigate the physical characteristics and behaviours of marine silty sands collected from the western coast of Korea. This study also included a theoretical development of the constitutive equation to evaluate stress-strain relationship and volume change of silty sands. The results and main conclusions of the study are summarized as follows; 1. Isotropic compression and swelling index are linearly decreased with an increase in relative density. 2. Both undrained shear strengh and elastic modulus are increased with an increase in relative density and confining pressure. 3. Internal friction angles obtained from drained and undrained compression tests of the soils are proportional to relative density. 4. The phenomenon of dilatancy of each sample is less profound when confining stress is increased but more profound when relative density is increased. 5. The slope of critical state lines is 1.78 for Saemangum, 1.70 for Siewha and 1.26 for Sukmoon sands. 6. In this study, Drucker-Praper type criterion is used and hardening function of Cap model is modified by hyperbolic fuction. This will improve a lack of physical meaning of hardening parameters in conventional Cap model. 7. A newly developed constitutive equation to the forementioned silty sands and checked its applicability. This is in good agreement with the measured data.

  • PDF

비압밀비배수 삼축압축시험에 의한 보강화강풍화토의 전단강도 특성 (Shear strength characteristics of reinforced decomposed granite soil by uncomsolidated-undrained triaxial compression test)

  • 조용성;구호본;박인준;김유성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.103-110
    • /
    • 2006
  • When enforced earth is used for the retain wall and four walls, the most important thing would be how to maximize the land utilization. Accordingly, in case of enforced earth, we pile up the minimal height of earth$(20\sim30cm)$ and harden the earth using a static dynamic hardening machine. In this paper, we tried to analyze and. compare the stress transformation characteristics of reinforced weathered granite soil. with geosynthetics when repetitive load is added to the enforced earth structure and when static load is added. The purposes of the study are as follows; 1) To compare and analyze non reinforced weathered granite soil and reinforced weathered granite. soil by executing a unconsolidated-undrained triaxial compression tests. 2) To identify the strength characteristics of weathered granite soil reinforced with geotextile due to the repetitive dynamic loads through comparison of the stress due to the static load and the repetitive dynamic loads.

  • PDF

Undrained shear strength and microstructural characterization of treated soft soil with recycled materials

  • Al-Bared, Mohammed A.M.;Harahap, Indra S.H.;Marto, Aminaton;Abad, Seyed Vahid Alavi Nezhad Khalil;Ali, Montasir O.A.
    • Geomechanics and Engineering
    • /
    • 제18권4호
    • /
    • pp.427-437
    • /
    • 2019
  • Waste materials are being produced in huge quantities globally, and the usual practice is to dump them into legal or illegal landfills. Recycled tiles (RT) are being used in soil stabilisation which is considered as sustainable solution to reduce the amount of waste and solve the geotechnical problems. Although the stabilisation of soil using RT improved the soil properties, it could not achieve the standard values required for construction. Thus, this study uses 20% RT together with low cement content (2%) to stabilise soft soil. Series of consolidated undrained triaxial compression tests were conducted on untreated and RT-cement treated samples. Each test was performed at 7, 14, and 28 days curing period and 50, 100, and 200 kPa confining pressures. The results revealed an improvement in the undrained shear strength parameters (cohesion and internal frication angle) of treated specimens compared to the untreated ones. The cohesion and friction angle of the treated samples were increased with the increase in curing time and confining pressure. The peak deviator stress of treated samples increases with the increment of either the effective confining pressures or the curing period. Microstructural and chemical tests were performed on both untreated and RT-cement treated samples, which included field emission scanning electron microscopic (FESEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and energy dispersive X-ray spectrometer (EDX). The results indicated the formation of cementation compounds such as calcium aluminium hydrate (C-A-H) within the treated samples. Consequently, the newly formed compounds were responsible for the improvement observed in the results of the triaxial tests. This research promotes the utilisation of RT to reduce the amount of cement used in soil stabilisation for cleaner planet and sustainable environment.

단일황복면 구성모델을 이용한 정규압밀 점토지반의 비배수 거동해석 (Undrained Behaviour of Normally Consolidated Clay Foundation Using Single-Hardening Constitutive Model)

  • 정진섭;이강일;박병기
    • 대한토목학회논문집
    • /
    • 제14권5호
    • /
    • pp.1229-1241
    • /
    • 1994
  • 본 연구는 탄 소성이론에 기초를 둔 Lade의 단일항복면 구성모델을 이용하여 정규압밀 점토지반의 비배수 거동을 연구한 것이다. 시료는 영산강 하류에서 채취한 무안 점토를 재생성시켜 동방압축팽창시험과 압밀비배수 삼축압축시험을 하여 이 구성모델에 필요한 11개의 토질매개변수를 결정하였다. 또한 비배수거동해석을 위한 유한요소 프로그램을 개발하였으며, 프로그램의 정도를 검증하기 위하여 매개변수결정에 사용된 시험결과를 역해석하였다. 그리고 2차원 모형지반에 재하시험을 실시하고 결과를 유한요소 프로그램으로 수치해석하여 서로 비교 검토하였다.

  • PDF

Time-dependent behaviour of interactive marine and terrestrial deposit clay

  • Chen, Xiaoping;Luo, Qingzi;Zhou, Qiujuan
    • Geomechanics and Engineering
    • /
    • 제7권3호
    • /
    • pp.279-295
    • /
    • 2014
  • A series of one-dimensional consolidation tests and triaxial creep tests were performed on Nansha clays, which are interactive marine and terrestrial deposits, to investigate their time-dependent behaviour. Based on experimental observations of oedometer tests, normally consolidated soils exhibit larger secondary compression than overconsolidated soils; the secondary consolidation coefficient ($C_{\alpha}$) generally gets the maximum value as load approaches the preconsolidation pressure. The postsurcharge secondary consolidation coefficient ($C_{\alpha}$') is significantly less than $C_{\alpha}$. The observed secondary compression behaviour is consistent with the $C_{\alpha}/C_c$ concept, regardless of surcharging. The $C_{\alpha}/C_c$ ratio is a constant that is applicable to the recompression and compression ranges. Compared with the stage-loading test, the single-loading oedometer test can evaluate the entire process of secondary compression; $C_{\alpha}$ varies significantly with time and is larger than the $C_{\alpha}$ obtained from the stage-loading test. Based on experimental observations of triaxial creep tests, the creep for the drained state differs from the creep for the undrained state. The behaviour can be predicted by a characteristic relationship among axial strain rate, deviator stress level and time.

An elastoplastic bounding surface model for the cyclic undrained behaviour of saturated soft clays

  • Cheng, Xinglei;Wang, Jianhua
    • Geomechanics and Engineering
    • /
    • 제11권3호
    • /
    • pp.325-343
    • /
    • 2016
  • A total stress-based bounding surface model is developed to predict the undrained behaviour of saturated soft clays under cyclic loads based on the anisotropic hardening modulus field and bounding-surface theories. A new hardening rule is developed based on a new interpolation function of the hardening modulus that has simple mathematic expression and fewer model parameters. The evolution of hardening modulus field is described in the deviatoric stress space. It is assumed that the stress reverse points are the mapping centre points and the mapping centre moves with the variation of loading and unloading paths to describe the cyclic stress-strain hysteresis curve. In addition, by introducing a model parameter that reflects the accumulation rate and level of shear strain to the interpolation function, the cyclic shakedown and failure behaviour of soil elements with different combinations of initial and cyclic stresses can be captured. The methods to determine the model parameters using cyclic triaxial compression tests are also studied. Finally, the cyclic triaxial extension and torsional shear tests are performed. By comparing the predictions with the test results, the model can be used to describe undrained cyclic stress-strain responses of elements with different stress states for the tested clays.

Some Influences of Anisotropy in Clay Soil and Rocks

  • R.H.G.Parry
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1997년도 Lecture Notes by Two Distinguished Scholars
    • /
    • pp.1.2-22
    • /
    • 1997
  • Anisotropic behaviour in soils and soft rocks may be either fabric of stress related ultra in practice is invariably a combination of both. Theoretical studies in the paper include tile iMluence oil untrained strength of assuming both the critical state and Mo21r-Coulomb concepts to hold, and the influence of elastic anisotropy oil predicted undrained effective stress paths. The predictions stemming from these theoretical concepts are examined in the light of evidence from triaxial compression and extension tests oil laboratory prepared, compacted and natural clays and from triaxial compression tests on clay shales. The experimental studies also show the Buence of sample orientation on untrained snear strength, as wen as the iIBluence of anisotropy old the effective stress angle cishearing resistance and of stress patn on measured stiffness.

  • PDF