• Title/Summary/Keyword: understanding genetic engineering

Search Result 90, Processing Time 0.026 seconds

Agricultural biotechnology: Opportunities and challenges associated with climate change (기후변화에 대응한 농업생명공학의 기회와 도전)

  • Chang, An-Cheol;Choi, Ji-Young;Lee, Shin-Woo;Kim, Dong-Hern;Bae, Shin-Chul
    • Journal of Plant Biotechnology
    • /
    • v.38 no.2
    • /
    • pp.117-124
    • /
    • 2011
  • Considering that the world population is expected to total 9 billion by 2050, it will clearly be necessary to sustain and even accelerate the rate of improvement in crop productivity. In the 21st century, we now face another, perhaps more devastating, environmental threat, namely climate change, which could cause irreversible damage to agricultural ecosystem and loss of production potential. Enhancing intrinsic yield, plant abiotic stress tolerance, and pest and pathogen resistance through agricultural biotechnology will be a critical part of feeding, clothing, and providing energy for the human population, and overcoming climate change. Development and commercialization of genetically engineered crops have significantly contributed to increase of crop yield and farmer's income, decrease of environmental impact associated with herbicide and insecticide, and to reduction of greenhouse gas emissions from this cropping area. Advances in plant genomics, proteomics and system biology have offered an unprecedented opportunities to identify genes, pathways and networks that control agricultural important traits. Because such advances will provide further details and complete understanding of interaction of plant systems and environmental variables, biotechnology is likely to be the most prominent part of the next generation of successful agricultural industry. In this article, we review the prospects for modification of agricultural target traits by genetic engineering, including enhancement of photosynthesis, abiotic stress tolerance, and pest and pathogen resistance associated with such opportunities and challenges under climate change.

Identification of Heterosis QTLs for Yield and Yield-Related Traits in Indica-Japonica Recombinant Inbred Lines of Rice (Oryza sativa L.)

  • Kim, Chang-Kug;Chu, Sang-Ho;Park, Han Yong;Seo, Jeonghwan;Kim, Backki;Lee, Gileung;Koh, Hee-Jong;Chin, Joong Hyoun
    • Plant Breeding and Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.371-389
    • /
    • 2017
  • Supplying sufficient rice to growing populations is a global challenge. Hybrid indica rice varieties exploiting heterosis have increased yields, but inter-subspecific crosses between indica and japonica varieties are hampered by sterility. Examination and genetic understanding of yield heterosis in indica/japonica crosses addressing yield barriers are basic requirements. In this study, QTLs for heterosis of yield traits were identified in indica-japonica recombinant inbred lines (RILs) using a total of 178 RILs originating from Dasanbyeo (indica) ${\times}$ TR22183 (japonica) (DT-RILs) and their backcrossed populations. Nine of sixty-six major quantitative trait loci (QTLs) identified in DT-RILs exhibited heterosis. Heterosis QTLs clustered with other traits on chromosomes 1, 4, and 8, and clusters were conserved between different RILs. The clusters contained several known yield enhancement genes/QTLs. Specific heterotic allele combinations contributed to four major heterosis QTLs, particularly for panicle and spikelet number traits. Heterosis for yield and yield-related traits was explained by the harmonized effects of overdominance, dominance, and epistatic interactions in inter-subspecific breeding populations.

A Novel Draft Genome-Scale Reconstruction Model of Isochrysis sp: Exploring Metabolic Pathways for Sustainable Aquaculture Innovations

  • Abhishek Sengupta;Tushar Gupta;Aman Chakraborty;Sudeepti Kulshrestha;Ritu Redhu;Raya Bhattacharjya;Archana Tiwari;Priyanka Narad
    • Microbiology and Biotechnology Letters
    • /
    • v.52 no.2
    • /
    • pp.141-151
    • /
    • 2024
  • Isochrysis sp. is a sea microalga that has become a species of interest because of the extreme lipid content and rapid growth rate of this organism indicating its potential for efficient biofuel production. Using genome sequencing/genome-scale modeling for the prediction of Isochrysis sp. metabolic utilities there is high scope for the identification of essential pathways for the extraction of byproducts of interest at a higher rate. In our work, we design and present iIsochr964, a genome-scale metabolic model of Isochrysis sp. including 4315 reactions, 934 genes, and 1879 metabolites, which are distributed among fourteen compartments. For model validation, experimental culture, and isolation of Isochrysis sp. were performed and biomass values were used for validation of the genome-scale model. OptFlux was instrumental in uncovering several novel metabolites that influence the organism's metabolism by increasing the flux of interacting metabolites, such as Malonyl-CoA, EPA, Protein and others. iIsochr964 provides a compelling resource of metabolic understanding to revolutionize its industrial applications, thereby fostering sustainable development and allowing estimations and simulations of the organism metabolism under varying physiological, chemical, and genetic conditions. It is also useful in principle to provide a systemic view of Isochrysis sp. metabolism, efficiently guiding research and granting context to omics data.

Flower Color Modification by Manipulating Flavonoid Biosynthetic Pathway (플라보노이드 대사 조절을 통한 화색 변경)

  • Lim, Sun-Hyung;Kim, Jae-Kwang;Kim, Dong-Hern;Sohn, Seong-Han;Lee, Jong-Yeol;Kim, Young-Mi;Ha, Sun-Hwa
    • Horticultural Science & Technology
    • /
    • v.29 no.6
    • /
    • pp.511-522
    • /
    • 2011
  • Flower color is one of the main target traits in the flower breeding. Recently, technological advances in genetic engineering have been successfully reported the flower colors, such as blue roses and blue carnations that are impossible to develop by traditional breeding. Accumulated knowledge-based approaches for flavonoid biosynthesis enabled to introduce novel and unique colors into flowers. These flower color modifications have been made through the regulation of flavonoid metabolic pathway - control of endogenous gene expression and introduction of foreign genes to produce novel and specific flavonoids - and the introduction of transcription factors that are known to regulate sets of genes being involving in the flavonoid biosynthetic pathway. More empirical regulation of the flavonoids metabolism requires the understanding for regulatory mechanism of intrinsic flavonoids depending on the flower crops and the very sophisticated control of flavonoid metabolic flow. In this review, we summarized successful examples of flower color modification. It might be useful to deduce the strategy for the creation of exquisite colors in flower plants.

Identification of growth trait related genes in a Yorkshire purebred pig population by genome-wide association studies

  • Meng, Qingli;Wang, Kejun;Liu, Xiaolei;Zhou, Haishen;Xu, Li;Wang, Zhaojun;Fang, Meiying
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.4
    • /
    • pp.462-469
    • /
    • 2017
  • Objective: The aim of this study is to identify genomic regions or genes controlling growth traits in pigs. Methods: Using a panel of 54,148 single nucleotide polymorphisms (SNPs), we performed a genome-wide Association (GWA) study in 562 pure Yorshire pigs with four growth traits: average daily gain from 30 kg to 100 kg or 115 kg, and days to 100 kg or 115 kg. Fixed and random model Circulating Probability Unification method was used to identify the associations between 54,148 SNPs and these four traits. SNP annotations were performed through the Sus scrofa data set from Ensembl. Bioinformatics analysis, including gene ontology analysis, pathway analysis and network analysis, was used to identify the candidate genes. Results: We detected 6 significant and 12 suggestive SNPs, and identified 9 candidate genes in close proximity to them (suppressor of glucose by autophagy [SOGA1], R-Spondin 2 [RSPO2], mitogen activated protein kinase kinase 6 [MAP2K6], phospholipase C beta 1 [PLCB1], rho GTPASE activating protein 24 [ARHGAP24], cytoplasmic polyadenylation element binding protein 4 [CPEB4], GLI family zinc finger 2 [GLI2], neuronal tyrosine-phosphorylated phosphoinositide-3-kinase adaptor 2 [NYAP2], and zinc finger protein multitype 2 [ZFPM2]). Gene ontology analysis and literature mining indicated that the candidate genes are involved in bone, muscle, fat, and lung development. Pathway analysis revealed that PLCB1 and MAP2K6 participate in the gonadotropin signaling pathway and suggests that these two genes contribute to growth at the onset of puberty. Conclusion: Our results provide new clues for understanding the genetic mechanisms underlying growth traits, and may help improve these traits in future breeding programs.

Availability of the metapopulation theory in research of biological invasion: Focusing on the invasion success (침입생물 연구에 대한 메타개체군 이론의 활용 가능성: 침입 성공을 중심으로)

  • Jaejun Song;Jinsol Hong;Kijong Cho
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.525-549
    • /
    • 2022
  • The process of biological invasion is led by the dynamics of a population as a demographic and evolutionary unit. Spatial structure can affect the population dynamics, and it is worth being considered in research on biological invasion which is always accompanied by dispersal. Metapopulation theory is a representative approach to spatially structured populations, which is chiefly applied in the field of ecology and evolutionary biology despite the controversy about its definition. In this study, metapopulation was considered as a spatially structured population that includes at least one subpopulation with significant extinction probability. The early phase of the invasion is suitable to be analyzed in aspects of the metapopulation concept because the introduced population usually has a high extinction probability, and their ecological·genetic traits determining the invasiveness can be affected by the metapopulation structure. Although it is important in the explanation of the prediction of the invasion probability, the metapopulation concept is rarely used in ecological research about biological invasion in Korea. It is expected that applying the metapopulation theory can supply a more detailed investigation of the invasion process at the population level, which is relatively inadequate in Korea. In this study, a framework dividing the invasive metapopulation into long- and middle-distance scales by the relative distance of movement to the natural dispersal range of species is proposed to easily analyze the effect of a metapopulation in real cases. Increased understanding of the mechanisms underlying invasions and improved prediction of future invasion risk are expected with the metapopulation concept and this framework.

Microbial Production of Carotenoids: Biological Functions and Commercial Applications (미생물에 의한 카로티노이드 생산; 생물학적 기능성 및 상업적 적용)

  • Seo, Yong Bae;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.27 no.6
    • /
    • pp.726-737
    • /
    • 2017
  • Carotenoids are isoprenoids with a long polyene chain containing 3 to 15 conjugated double bonds, which determines their absorption spectrum. They typically consist of a $C_{40}$ hydrocarbon backbone often modified by different oxygen-containing functional groups, to yield cyclic or acyclic xanthophylls. Much work has also been focused on the identification, production, and utilization of natural sources of carotenoid (plants, microorganisms and crustacean by-products) as an alternative to the synthetic pigment which currently covers most of the world markets. Nevertheless, only a few carotenoids (${\beta}-carotene$, lycopene, astaxanthin, canthaxanthin, and lutein) can be produced commercially by fermentation or isolation from the small number of abundant natural sources. The market and demand for carotenoids is anticipated to increase dramatically with the discovery that carotenoids exhibit significant anti-carcinogenic activities and play an important role in the prevention of chronic diseases. The increasing importance of carotenoids in the feed, nutraceutical food and pharmaceutical markets has renewed by efforts to find ways of producing additional carotenoid structures in useful quantities. Because microorganisms and plants synthesize hundreds of different complex chemical carotenoid structures and a number of carotenoid biosynthetic pathways have been elucidated on a molecular level, metabolic and genetic engineering of microorganisms can provide a means towards economic production of carotenoid structures that are otherwise inaccessible. The aim of this article is to review our current understanding of carotenoid formation, to explain the perceived benefits of carotenoid in the diet and review the efforts that have been made to increase carotenoid in certain microorganisms.

Human Lung Insults due Air Pollutant -A Review for Priority Setting in the Research- (대기오염에 의한 폐장조직 손상 -연구방향의 설정을 위한 논의-)

  • 김건열;백도명
    • Journal of environmental and Sanitary engineering
    • /
    • v.7 no.2
    • /
    • pp.95-110
    • /
    • 1992
  • Much progress has been made in understanding the subcellular events of the human lung injuries after acute exposure to environmental air pollutants. Host of those events represent oxidative damages mediated by reactive oxygen species such as superoxide, hydrogen peroxide, and the hydroxy, free radical. Recently, nitric oxide (NO) was found to be endogenously produced by endothelial cells and cells of the reticulo-endothelial system as endothelialderived relaxation factor (EDRF) which is a vasoactive and neurotransmitter substance. Together with superoxide, NO can form another strong oxidant, peroxonitrite. The relative importance of exogenous sources of $N0/N0_2$ and endogenous production of NO by the EDRF producing enzymes in the oxidative stresses to the heman lung has to be elucidated. The exact events leading to chronic irreversible damage are still yet to be known. From chronic exposure to oxidant gases, progressive epithelial and interstitial damages develop. Type I epithelial cells become thicker and cover a smaller average alveolar surface area while thee II cells proliferate instead. Under acute damages, the extent of loss of the alveolar epithelial cell lining, especially type II cells appears to be a good predictor of the ensuing irreversible damage to alveolar compartment. Interstitial matrix undergo remodeling during chronic exposure with increased collagen fibers and interstitial fibroblasts. However, Inany of these changes can be reversed after cessation of exposure. Among chronic lung injuries, genetic damages and repair responses received particular attention in view of the known increased lung cancer risks from exposure to several air pollutants. Heavy metals from foundry emission, automobile traffics, and total suspended particulate, especially polycystic aromatic hydrocarbons have been positively linked with the development of lung cancer. Asbestos in another air pollutant with known risk of lung cancer and mesothelioma, but asbestos fibers are nonauthentic in most bioassays. Studies using the electron spin resonance spin trapping method show that the presence of iron in asbestos accelerates the production of the hydroxy, radical in vitro. Interactions of these reactive oxygen species with particular cellular components and disruption of cell defense mechanisms still await further studies to elucidate the carcinogenic potential of asbestos fibers of different size and chemical composition. The distribution of inhaled pollutants and the magnitude of their eventual effects on the respiratory tract are determined by pollutant-independent physical factors such as anatomy of the respiratory tract and level and pattern of breathing, as well as by pollutant-specific phyco-chemical factors such as the reactivity, solubility, and diffusivity of the foreign gas in mucus, blood and tissue. Many of these individual factors determining dose can be quantified in vitro. However, mathematical models based on these factors should be validated for its integrity by using data from intact human lungs.

  • PDF

Organ Specific Expression of the nos-NPT II Gene in Transgenic Hybrid Poplar (형질 전환된 포플러에 대한 nos-NPT II 유전자의 기관별 발현 특성)

  • Chun, Young Woo;Klopfenstein, Ned B.
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.1
    • /
    • pp.77-86
    • /
    • 1995
  • To effectively modify tree function with genetic engineering, transgenes must be expressed at the proper level in the appropriate tissues at suitable developmental stages. Toward understanding the spatial and temporal expression of transgenes in woody plants, transgene expression was evaluated in three greenhouse-grown, transgenic lines of Populus alba ${\times}$ P. grandidentata hybrid clone 'Hansen'. All transgenic poplar lines possess constructs containing the bacterial nopaline synthase(nos) promoter linked to a neomycin phosphotransferase II(NPT II) selectable marker gene. In addition, each transgenic poplar line contains one of the following gene constructs : 1) a wound-inducible potato proteinase inhibitor II (pin2) promoter linked to a chloramphenicol acetyltransferase(CAT) reporter gene. 2) a nos promoter linked to a PIN2 structural gene : or 3) a Cauliflower Mosaic Virus 35s promoter linked to a PIN2 structural gene. Polymerase chain reaction(PCR) was used to verify the presence of foreign genes in the poplar genome. Enzyme-linked immunosorbent assays(ELISAs) were used to evaluate organ specific expression of the nos-NPT II construct. NPT II expression was detected in leaves, petioles, stems, and roots of transgenic poplar, thereby indicating that the nos promoter is potentially effective for general constitutive expression of transgenes. NPT expression varied among transgenic poplar lines and among organs for one transgenic line, Tr15. With Tr15, NPT II levels were highest in older leaves and petioles. These results indicate that screening of several transgenic lines may be required to identify lines with optimal transgene expression.

  • PDF

Development of a Value Inquiry Model in Biology Education (생물교육에서의 가치 탐구 모형 개발)

  • Jeong, Eun-Young;Kim, Young-Soo
    • Journal of The Korean Association For Science Education
    • /
    • v.20 no.4
    • /
    • pp.582-598
    • /
    • 2000
  • There are many bioethical issues in line with the rapid advance of biology. In this situation, it is important for students to make a rational decision on value problem. In this study 'value inquiry in biology education' is defined as 'the process of rational value judgement and wise decision-making in the biology-related value problem' and the model was developed. To develop the model, value inquiry models were reviewed. Value clarification model is helpful for the formation of the personal value as the process of individual value inquiry, but it isn't helpful for clarifying the value conflicts. Value analysis model focuses on the rational solution of value problem through the logical procedure. But it has the limitations that overemphasizing the logical and systematic aspects results in devaluating students' affective aspects. So it is necessary to coordinate psychological and logical aspects of value inquiry. In this regard, the model was developed, including identifying and clarifying value problem, understanding biological knowledge related to conflict situation, considering on the related persons, searching for alternatives, predicting the consequences of each alternative, selecting the alternative, evaluating the alternative, and final value judgement and affirming it. The educational objectives of value inquiry were selected in consideration of the ability to carry out the steps of the developed model. And the selected contents were animal duplication, test-tube baby, genetic engineering, growth hormone injection problem, brain death, organ transplant, animal to be experimented and were organized on the basis of the 6th and the 7th science curriculum. And the suitable instructional models for the value inquiry education were selected: bioethical value clarification decision-making model, group presentation according to the value analysis model, role play and debate, and discussion through web forum. And the interview was considered to be suitable to evaluate the students' value inquiry ability and the rubric was made to evaluate the attainment of the educational objectives for value inquiry.

  • PDF