• Title/Summary/Keyword: underground repository

Search Result 128, Processing Time 0.025 seconds

Optimization of the Layout of a Radioactive Waste Repository Based on Thermal Analysis (열해석에 기초한 방사성폐기물 처분장 배치 최적화)

  • Kwon Sangki;Choi Jong-Won;Cho Won-Jin
    • Tunnel and Underground Space
    • /
    • v.14 no.6 s.53
    • /
    • pp.429-439
    • /
    • 2004
  • The deep underground High Level Waste (HLW) repository to dispose of 36,000tons of spent fuel from the reactors in Korea needs about $4km^2$ repository area. In this study, the deep undergrond repository layout was optimized to minimize the excavation rock volume as well as underground repository area. In the optimization, the results from thermal analysis were used to define the influence of tunnel and deposition hole spacings on repository layout. The repository area and excavation rock volume could be reduced with longer disposal tunnel length. When it is necessary to reduce the repository area with satisfying thermal criteria, it is better to reduce tunnel spacing and increase deposition hole spacing. In contrast, the excavation rock volume can be reduced by increasing the tunnel spacing and decreasing the hole spacing.

Three-Dimensional Modelling and Sensitivity Analysis for the Stability Assessment of Deep Underground Repository

  • Kwon, S.;Park, J.H.;Park, J.W.;Kang, C.H.
    • Nuclear Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.605-618
    • /
    • 2001
  • For the mechanical stability assessment of a deep underground high-level waste repository. computer simulations using FLAC3D were carried out and important parameters including stress ratio, depth, tunnel size, joint spacing, and joint properties were chosen from sensitivity analysis. The main effect as well as the interaction effect between the important parameters could be investigated effectively using fractional factorial design . In order to analyze the stability of the disposal tunnel and deposition hole in a discontinuous rock mass, different modelings were performed under different conditions using 3DEC and the influence of joint distribution and properties, rock properties and stress ratio could be determined. From the three dimensional modelings, it was concluded that the conceptual repository design was mechanically stable even in a discontinuous rock mass.

  • PDF

A Stress Analysis of the Cast Iron Insert of Spent Nuclear Fuel Disposal Canister with the Underground Water Pressure Variation in a Deep Repository (지하수압 변화에 따른 심지층 핵폐기물 처분용기 내부 주철 구조물의 응력해석)

  • 강신욱;권영주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.77-84
    • /
    • 2000
  • In this paper, the stress analysis of the cast iron insert of spent nuclear fuel disposal canister in a deep repository at 500m underground is done for the underground pressure variation. Since the nuclear fuel disposal usually emits much heat and radiation, its careful treatment is required. And so a long term safe repository at a deep bedrock is used. Under this situation, the canister experiences some mechanical external loads such as hydrostatic pressue of underground water, swelling pressure of bentonite, sudden rock movement etc.. Hence, the canister should be designed to withstand these loads. The cast iron insert of the canister mainly supports these loads. Therefore, the stress analysis of the cast iron insert is done to determine the design variables such as the diameter versus length of canister and the number and array type of inner baskets in this paper, The linear static structural analysis is done using the finite element analysis method. And the finite element analysis code, NISA, is used for the computation.

  • PDF

Controlled Blasting Technique Applied to the Construction of the Canada Underground Research Laboratory (캐나다 Underground Research Laboratory 건설을 위한 조절발파기법의 적용)

  • Kwon Sang-Ki;Kuzyk Gregory W.
    • Explosives and Blasting
    • /
    • v.23 no.2
    • /
    • pp.1-14
    • /
    • 2005
  • The Korean Atomic Energy Research Institute is currently planning the construction of an Underground Research Tunnel to carry out research and development related to the disposal of high-level wastes from nuclear reactors used to generate electrical power. This paper discusses the excavation methods used to construct the Canadian Underground Research Laboratory and their application in planning for the construction of a similar underground laboratory and eventually an underground repository for high-level wastes in Korea.

Technology Assessment of the Repository Alternatives to Establish a Reference HLW Disposal Concept

  • Choi, Jong-Won;Choi, Young-Sung;Kwon, Sang-Ki;Kuh, Jung-Eui;Kang, Chul-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.83-100
    • /
    • 1999
  • As disposal packaging concepts of spent fuels generated from the domestic NPP, two types, one is to package PWR and CANDU spent fuels in different containers and the other is to package them together, were proposed. The configuration of the containers and the layout of underground repository, such as the container spacing and the deposition tunnel spacing, were developed. The layout of underground repository satisfies the thermal constraint of the bentonite buffer surrounding disposal container, which should be lower than $100^{\circ}C$ in order to keep the physical and chemical properties of bentonite From the spent fuel packaging concepts and container emplacement methods, seven options were developed. With a typical pair-wise comparison methods, AHP, the most promising disposal concept was selected based on the technology Point of view.

  • PDF

A Case Study on the Effect of Fault Reactivation on Groundwater Flow around a Hypothetical HLW Repository (Fault Reactivation에 의한 가상 방사성폐기물 처분장 주변 지하수 유동 변화 평가 : 2차원 케이스 스터디)

  • Seo, Eun-Jin;Hwang, Yong-Soo;Han, Ji-Woong
    • Tunnel and Underground Space
    • /
    • v.16 no.4 s.63
    • /
    • pp.307-312
    • /
    • 2006
  • Radionuclide released from corroded container migrates through groundwater flow pathway in the underground rock. Therefore it is important to study the groundwater flow analysis for total system performance assessment of a HLW repository. In this study assuming a geological change of underground rock in future, the two dimensional groundwater flow analysis is done by the NAMMU, the assessment code for groundwater flow in porous media. Assuming the hypothetical repository with the reactivation of fault in the vicinity of it, the effect of change in aperture and permeability by reactivation of fault around a repository on groundwater pathway is studied.

Feasibility Study on the Utilization of Abandoned Underground Excavation Caverns (지하 채굴 폐공동의 활용 가능성 검토)

  • 임한욱;백환조;김치환
    • Tunnel and Underground Space
    • /
    • v.10 no.2
    • /
    • pp.249-256
    • /
    • 2000
  • According to the industrial restructuring in the late 1980's, most domestic mines have been shutdown or suspended in operation. The closed underground excavation caverns remain in their abandoned conditions, and they will potentially cause environmental hazards. To evaluate the feasibility of the utilization of the abandoned caverns, the foreign crises were studied. As a result, we proposed several possible examples including underground storage cavern fur food products, underground compressed air energy system(CAES), and underground repository (or incineration plant) of industrial wastes. Among them, the underground waste repositories are most probable to be seen in Korea in the near future. For this, the study in rock engineering aspects should be conducted, which will include the establishment of support system and safety measure of the abandoned underground excavation caverns.

  • PDF

Validation of Performance of Engineered Barriers in a Geological Repository: Review of In-Situ Experimental Approach (심지층처분장 공학적방벽 성능 실증: 현장실험적 접근법 검토)

  • Cho, Won-Jin;Kim, Geon Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.137-164
    • /
    • 2018
  • The guarantee of the performance of the engineered barriers in a geological repository is very important for the long-term safety of disposal as well as the efficient design of the repository. Therefore, the performance of the engineered barriers under repository condition should be demonstrated by in-situ experiments conducted in an underground research laboratory. This article provides a review of the major in-situ experiments that have been carried out over the past several decades at underground research laboratories around the world to validate the performance of engineered barriers of a repository, as well as their results. In-situ experiments to study the coupled thermal-hydraulic-mechanical behavior of the engineered barrier system used to simulate the post-closure performance of the repository are analyzed as a priority. In addition, in-situ experiments to investigate the performance of the buffer material under a real repository environment have been reviewed. State-of-the art in-situ validations of the buffer-concrete interaction, and the installation of the buffer, backfill and plug, as well as characterization of the near-field rock and the corrosion of the canister materials are, also performed.

An Introduction to the Expansion Plan of the Underground Repository of Low- and Intermediate-level Radioactive Waste In Forsmark, Sweden (스웨덴 포쉬마크 중저준위 방사성 폐기물 지하 처분장 확장 계획 소개)

  • Kwon, Saeha;Min, Ki-Bok;Stephansson, Ove
    • Tunnel and Underground Space
    • /
    • v.26 no.5
    • /
    • pp.339-347
    • /
    • 2016
  • The world's first underground repository for low- and intermediate- level radioactive waste (SFR1) has been in operation since 1988. SFR1 can accommodate $1,000m^3$ of radioactive waste per year with 4 chambers and 1 silo with a total capacity of $63,000m^3$ of radioactive waste. With extended operation time of 10 of the 12 nuclear power reactors and dismantling of the other 2 nuclear reactors, more nuclear waste need to be disposed in the future. Therefore, Swedish Nuclear Fuel and Waste Management Company (SKB) submitted a license application for a repository extension (SFR3) that consists of 6 additional rock chambers with a capacity of $108,000m^3$ of radioactive waste and for accommodating 9 boiling water reactor tanks. In this study, plans for the extension SFR3 are presented with the geological, geomechanical and hydrogeological issues to be considered.

A Numerical analysis of Underground Repository Cavern in Korean Crystalline rocks (우리나라 결정질암내 동굴처분장에 대한 수치해석)

  • 윤건신
    • The Journal of Engineering Geology
    • /
    • v.1 no.1
    • /
    • pp.68-84
    • /
    • 1991
  • A numerical analysis using Universal Distinct Element Code program for the nuclear waste disposal cavern has been performed for a typical Korean crystalline rock condition with same geometry of Swedish low and intermediate nuclear waste disposal repository(S.F.R). The stress concentration, displacement and safety factor for the typical single cross section of cavern, 5 caverns and a silo are analyzed.

  • PDF