• Title/Summary/Keyword: underground power transmission

Search Result 252, Processing Time 0.029 seconds

A STUDY OF INNER COOLING CABLE SYSTEM FOR UNDERGROUND POWER TRANSMISSION LINE (지중 송선선로의 대용량화를 위한 내부냉각 케이블 시스템의 검토)

  • Choi, Chang-Soo;Lee, Kab-Joong;Chugn, Moo-Young
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.615-617
    • /
    • 1993
  • Recently, the demand of electric power has increased remarkably in densely populated cities in Korea. Various method to increase the power transmission capability of underground cable lines has been investigated. In this paper presents the study of inner cool ins cable system for larger power transmission capability. It is also shown that designed inner cooling cable and their system proves more economic than conventional type cables.

  • PDF

The first installation of 345kV long-length transmission line between Mikyum and Sungdong substation in Korea (345kV 미금${\sim}$성동변전소간 장거리 지중송전선로 준공)

  • Kim, Y.;Seong, J.K.;Go, C.S.;Han, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1731-1733
    • /
    • 1997
  • The first 150lkV underground transmission line of Korea was installed between Danginri and Yongsan substation in 1974. Since then, the underground transmission lines of about 720 circuit-km had been installed up to 1995. As the national economy has been enlarged and the population of city has been rapidly increased, the demand of an electric power has been very increased. Therefore the first 345kV long-length transmission line of Korea was installed between Mikyum and Sungdong substation on Jan., 1997. This paper describes the design of the 345kV oil-filled cable and its accessories, the design of the system, the methods of installation, field tests, and the future trends of the underground transmission line in Korea.

  • PDF

Development and Application of Pre/Post-processor to EMTP for Sequence Impedance Analysis of Underground Transmission Cables (지중 송전선로 대칭분 임피던스 해석을 위한 EMTP 전후처리기 개발과 활용)

  • Choi, Jong-Kee;Jang, Byung-Tae;An, Yong-Ho;Choi, Sang-Kyu;Lee, Myoung-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1364-1370
    • /
    • 2014
  • Power system fault analysis has been based on symmetrical component method, which describes power system elements by positive, negative and zero sequence impedance. Obtaining accurate line impedances as possible are very important for estimating fault current magnitude and setting distance relay accurately. Especially, accurate calculation of zero sequence impedance is important because most of transmission line faults are line-to-ground faults, not balanced three-phase fault. Since KEPCO has started measuring of transmission line impedance at 2005, it has been revealed that the measured and calculated line impedances are well agreed within reasonable accuracy. In case of underground transmission lines, however, large discrepancies in zero sequence impedance were observed occasionally. Since zero sequence impedance is an important input data for distance relay to locate faulted point correctly, it is urgently required to analyze, detect and consider countermeasures to the source of these discrepancies. In this paper, development of pre/post processor to ATP (Alternative Transient Program) version of EMTP (Electro-Magnetic Transient Program) for sequence impedance calculation was described. With the developed processor ATP-cable, effects of ground resistance and ECC (Earth Continuity Conductor) on sequence impedance were analyzed.

A Prospect of the Future Power System Configuration with 22kV Class Superconducting Cable (22kV급 초전도 케이블을 이용한 미래 전력계통 구성 방안 고찰)

  • Kim, Jong-Yul;Yoon, Jae-Young;Choi, Heung-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.406-408
    • /
    • 2003
  • As power demand increases gradually, the call for underground transmission system increases. But it is very difficult and high in cost to construct new ducts and/or tunnels for power cables in metropolitan areas. HTS (High Temperature Superconducting) cable has the several useful characteristics such as increased power density. Therefore HTS cable can allow more power to be moved in existing ducts, which means very large economical and environmental benefits. In this paper, we investigate the status of korean power system and underground transmission system. Based on this, the feasibility study on applying 22kV class HTS cable to korean power system is carried out and then we propose the new power system configuration of metropolitan area with 22kV class HTS cable.

  • PDF

Development and Applicatin of EMTP Based Power Cable Simulator for Underground Transmission Cables (EMTP 기반 지중송전케이블 시뮬레이터 개발 및 적용)

  • Jung, Chae-Kyun;Park, Hung-Sok;Kang, Ji-Won;Lee, Jong-Beom;Han, Sang-Ok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.8
    • /
    • pp.1374-1381
    • /
    • 2010
  • This paper discusses the characteristics of sheath circulating current as well as the development and application of new software for underground power cable systems. Generally, in steady state, high sheath circulating current causes the increase of sheath temperature and thermal resistance which leads to the steeply reduction of the power capacity. Therefore, the exact calculation of sheath circulating current is required for analysis about the influence of high sheath current on permissible current. In this paper, Power Cable Simulator is developed for calculation of the sheath current. It can analyse the sheath current by real time. It is also easier to use than conventional software, such as EMTP and CabSim, because all the data for calculating the cable parameters are stored in a database(DB) within Power Cable Simulator. In addition, the accuracy of Power Cable Simulator is also proved through the comparison among the current calculated by Power Cable Simulator, EMTP and Cabsim with measured current.

Fault Location Using Neuro-Fuzzy for the Line-to-Ground Fault in Combined Transmission Lines with Underground Power Cables (뉴로-퍼지를 이용한 혼합송전선로에서의 1선지락 고장시 고장점 추정)

  • 김경호;이종범;정영호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.10
    • /
    • pp.602-609
    • /
    • 2003
  • This paper describes the fault location calculation using neuro-fuzzy systems in combined transmission lines with underground power cables. Neuro-fuzzy systems used in this paper are composed of two parts for fault section and fault location. First, neuro-fuzzy system discriminates the fault section between overhead and underground with normalized detail coefficient obtained by wavelet transform. Normalized detail coefficients of voltage and current in half cycle information are used for the inputs of neuro-fuzzy system. As the result of neuro-fuzzy system for fault section, impedance of selected fault section is calculated and it is used as the inputs of the neuro-fuzzy systems for fault location. Neuro-fuzzy systems for fault location also consist of two parts. One calculates the fault location of overhead, and the other does for underground. Fault section is completely classified and neuro-fuzzy system for fault location calculates the distance from the relaying point. Neuro-fuzzy systems proposed in this paper shows the excellent results of fault section and fault location.

Analysis of Switching Overvoltage in 345kV Underground and Combined Transmission Systems (345kV 지중 및 혼합 송전계통에서의 개폐 과전압 해석)

  • 정채균;이종범;강지원
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.12
    • /
    • pp.713-721
    • /
    • 2003
  • This paper analyzes the switching overvoltage occurred on 345kV underground power cable system as well as combined transmission system using EMTP. Cable length and closing time, preinsertion resistance have effect on switching overvoltage. Therefore, this paper analyzes the switching overvoltage occurred on conductor and sheath with change of those parameters. Specially, the cross bonding position becomes discontinuity point because of the difference between surge impedance of metal sheath and that of lead cable. Thus, the transmission and the reflection of traveling wave complexly occur at this connection point. According to these influences, voltage between sheath and earth as well as voltage between joint boxes rise. Time to crest point of switching overvoltage is longer than lightning overvoltage. Even though the voltage induced by switching surge is smaller than lightning surge, that voltage may have serious effect on the metal sheath. Therefore, this paper also analyses the reduction effect of switching overvoltage when the preinsertion resistance of circuit breaker is considered.

A Study of Large Capability of Underground Power Transmission Line, Environmental and High reliability (전력케이블 대 용량화에 따른 환경과의 조화 및 보수의 고 신뢰도화)

  • Chung, Moo-Young;Kwon, Byung-Il;Nam, Jeong-Se
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1841-1843
    • /
    • 1996
  • To meet recent increasing demand for electric power in large cities in Korea, and to improve reliability of the power supply. Especially, demand for electric power apparatus places great emphasis on not only function but also environmental factors. In this paper, environpolitics describes according to large capacity demand for extra high voltage underground transmission lines and high reliability of the power supply.

  • PDF

A Study on Lightning Overvoltage Characteristics of Grounding Systems in Underground Distribution Power Cables

  • Jung, Chae-Kyun;Jung, Yeon-Ha;Kang, Ji-Won
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.628-634
    • /
    • 2014
  • This paper investigates the transient characteristics of grounding systems used in under-ground distribution power cables. Recently, two kinds of grounding system are used for underground distribution cables in Korea. The first one is conventional multi-point grounding system, the other is newly proposed non-bundled common grounding system. The non-bundled common grounding system has an advantage the decreasing the power loss due to decrease of the shield circulation current. In this paper, the lightning overvoltage induced in neutral wire (in case of non-bundled common grounding system, overvoltage between opened neural wires and grounding in each phase) of these two kinds of grounding systems are estimated and compared by field tests and EMTP simulations. The EMTP simulation methods are firstly verified by comparison of measurement and simulation. Finally, the insulation level against lightning is expected by EMTP simulation results using verified model.

Review of the Conceptual Design for the Use of HTS Power Transmission Cable for a Metropolitan Area

  • Park, Sang-Bong
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.2
    • /
    • pp.63-69
    • /
    • 2003
  • The necessity of compact high temperature superconducting cables is more keenly felt in densely populated metropolitan areas. Because the compact high-temperature superconducting cables can be installed in ducts and tunnels, thereby reducing construction costs and making the use of underground space more effective, the effect of introducing it to the power system will be huge. Seoul, Korea, is selected as a review model for this paper. The loads are estimated by scenario based on a survey and analysis of 345kV and 154kV power supply networks in this area. Based on this, the following elements for an urban transmission system are examined. (1) A method of constructing a model system to introduce high-temperature superconducting cables to metropolitan areas is presented. (2) A case study is conducted through the analysis of power demand scenarios, and the amount of high-temperature superconducting cable to be introduced by scenario is examined. (3) The economy involved in expanding existing cables and introducing high-temperature superconducting cables(ducts or tunnels) following load increase in urban areas is examined and compared., and standards for current cable ducts are calculated. (4) The voltage level that can be accommodated by existing ducts is examined.