• Title/Summary/Keyword: underground gas pipelines

Search Result 71, Processing Time 0.041 seconds

A Mitigation Methode of DC Stray Current for Underground Metallic Structures in KOREA (국가 기간 시설물의 전식 대책(안))

  • Bae, Jeong-Hyo;Ha, Yoon-Cheol;Ha, Tae-Hyun;Lee, Hyun-Goo;Kim, Dae-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1609-1611
    • /
    • 2007
  • The owner of underground metallic structures (gas pipeline, oil pipeline, water pipeline, etc) has a burden of responsibility for the corrosion protection in order to prevent big accidents like gas explosion, soil pollution, leakage and so on. So far, Cathodic Protection(CP) technology have been implemented for protection of underground systems. The stray current from DC subway system in Korea has affected the cathodic protection (CP) system of the buried pipelines adjacent to the railroads. In this aspect, KERI has developed a various mitigation method, drainage system through steel bar under the rail, a stray current gathering mesh system, insulation method between yard and main line, distributed ICCP(Impressed Current Cathodic System), High speed response rectifier, restrictive drainage system, Boding ICCP system. In this paper, the mechanism of mitigation method of DC stray current for underground metallic structures is described.

  • PDF

The Study on the AC Interference of High Power Cable on Underground Gas Pipeline (전력케이블과 가스배관의 병행구간에 대한 교류부식 영향 검토 연구)

  • Bae, J.H.;Kim, D.K.;Ha, T.H.;Lee, H.G.;Kwak, B.M.;Lim, C.J.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.470-473
    • /
    • 2000
  • Because of the continuous growth of energy consumption, and also the tendency to site power lines and pipelines along the same routes, the close proximity of high voltage structures and metallic pipelines has become more and more frequent. Moreover, normal steady state and fault currents become higher as electric networks increase in size and power. Therefore, there has been and still is a growing concern (safety of people marking contact with pipeline, risk of damage to the pipeline coating, the metal and equipment connected to pipeline. especially cathodic protection system) about possible hazards resulting from the influence of high voltage power system on metallic structures(gas pipeline, oil pipeline and water pipeline etc.). Therefore, we analyze the interference problems when the gas pipeline is buried with power cable in the same submarine tunnel. This paper present the results of the study about interference mechanism, AC corrosion, limitation of safety voltage and analysis of indiction voltage.

  • PDF

A Study on the Improvement of the Standards of Backfill Materials for Underground Pipelines Carrying Natural Gas (도시가스 배관용 되메움재 기준 개선에 관한 연구)

  • Ryou, Young-Don;Kwak, Che-Sik;Ryu, Young-Jo;Lee, Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.75-80
    • /
    • 2008
  • According to the Integrated Notice on City Gas Safety Management Standards, materials for bedding and foundation which are around the pipe should be sands or fine grade soil without large particle that is more than 19 mm size. However, sands are mostly used at gas pipeline construction sites and this causes a shortage of sands and an increase of construction costs. It even causes the disruption of natural environment. In order to improve the standards of backfill material, we have researched regulations in other countries and investigated the pipeline construction sites to survey the present state of backfilling. We also have studied what the bedding and foundation materials affect on buried gas pipelines. Lastly, we have suggested suitable materials for bedding and foundation besides sands. We are sure this paper help the government amend the Notice about backfill materials.

  • PDF

A study on Development of Multiple function meters for anticorrosion at underground gas pipelines (방식전용 다기능 전위측정기 개발 연구)

  • Park, Gyou-Tae;Lyu, Geun-Jun;Kwon, Jeong-Rock;Lee, Kuk-Jin;Yoon, Myung-Sub;Song, Bo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.298-299
    • /
    • 2007
  • 매설배관은 관련법규에 따라 방식(anticorrosion)상태나 배관의 효율적인 유지관리를 위하여 배관의 방식전위를 관로를 따라 주기적으로 측정하여 전철의 영향이나 타 배설배관 및 방식시스템의 상황이 파악되어야 한다. 일반적인 방식전위측정기는 토양비저항이 30 내지 40 $M{\Omega}$ 이상의 높은 지역에서의 방식전위측정 시 전위왜곡이 발생하여 정확한 방식상태를 판단하기 곤란한 경우가 있다. 이러한 장애를 극복하고자 입력임피던스를 100$M{\Omega}$으로 설계하여 방식전위 측정시의 왜곡을 개선 및 정확도를 높이고 방식유지관리에 반드시 필요한 직류 및 교류 전압, 전류, 접지저항, 주파수 등을 측정할 수 있는 방식전용 다기능 계측기를 개발하였으며, 이는 측정 및 휴대가 용이하여 현장에 도움을 주고 있다.

  • PDF

A Study on the Development of the Repair Standards for Underground Pipelines Carrying Natural Gas (도시가스 매설배관 보수기준 개발에 관한 연구)

  • Ryou, Young-Don;Lee, Jin-Han;Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.4
    • /
    • pp.33-43
    • /
    • 2016
  • Grinding, weld deposition, type A sleeve, type B sleeve, composite sleeve, hot tapping and clamp are used as the method to repair the buried pipelines in the United States, UK and Europe. In the event of defect to the pipeline, they have repaired the pipeline through the fitness-for-service assessments. In addition, they have guidelines for the possible repair methods to apply to each type of damage, which is occurred due to the 3rd party construction or corrosion. According to the KGS FS551, Safety Validation in Detail including ECDA(External Corrosion Direct Assessment) as one method of integrity management should be carried out for the old pipeline which supply natural gas as the middle pressure in Korea. Where a defect on the pipelines is found, on the result of Safety Validation in Detail, the pipelines should be repaired or replaced by new piping. However, there are no guidelines or regulations regarding the repair and reinforcement of pipeline, so that, cutting the damaged pipeline and replacing it as a segment of new pipe is the only way in Korea until now. We have suggested pipeline repair methods including type A, B sleeve, composite sleeve, after the survey of foreign repair method and standards including the method of United States and the United Kingdom, and after analysis of the results on pipeline repair test including type A, type B sleeve and composite sleeve.

Ground strain estimation for lifeline earthquake engineering

  • Koike, Takeshi;Maruyama, Osamu;Garciano, Lessandro Estelito
    • Structural Engineering and Mechanics
    • /
    • v.25 no.3
    • /
    • pp.291-310
    • /
    • 2007
  • Current seismic design guidelines in Japan are diverse in the seismic ground strain estimates, because the concepts on a horizontally propagating wave model are not consistent in various seismic design guidelines including gas, water and other underground structures. The purpose of this study is (a) to derive the analytical methods to estimate the ground strains for incident seismic waves, (b) to develop a statistical estimation technique of the ground strains, and finally (c) to compare the theoretical estimation with the observed data which was measured at 441 sites in the 1999 Chi-Chi Earthquake in Taiwan.

SUSTAINABILITY SOLUTIONS USING TRENCHLESS TECHNOLOGIES IN URBAN UNDERGROUND INFRASTRUCTURE DEVELOPMENT

  • Dae-Hyun (Dan) Koo;Samuel Ariaratnam
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.367-374
    • /
    • 2013
  • Underground infrastructure systems provide essential public services and goods through buried structures including water and sewer, gas and petroleum, power and communication pipelines. The majority of existing underground infrastructure systems was installed in green field areas prior to development of complex urban built environments. Currently, there is a global trend to escalate major demand for underground infrastructure system renewal and new installation while minimizing disruption and maintaining functions of existing superstructures. Therefore, Engineers and utility owners are rigorously seeking technologies that minimize environmental, social, and economic impact during the renewal and installation process. Trenchless technologies have proven to be socially less disruptive, more environmentally friendly, energy conservative and economically viable alternative methods. All of those benefits are adequate to enhance overall sustainability. This paper describes effective sustainable solutions using trenchless technologies. Sustainability is assessed by a comparison between conventional open cut and trenchless technology methods. Sustainability analysis is based on a broad perspective combining the three main aspects of sustainability: economic; environmental; and social. Economic includes construction cost, benefit, and social cost analysis. Environmental includes emission estimation and environmental quality impact study. Social includes various social impacts on an urban area. This paper summarizes sustainable trenchless technology solutions and presents a sustainable construction method selection process in a proposed framework to be used in urban underground infrastructure capital improvement projects.

  • PDF

A Case Study(1) of Mitigation Methode of DC Stray Current for Underground Metallic Structures in KOREA (국가기간시설물의 전식대책(안) 및 그 적용 사례(1))

  • Bae, Jeong-Hyo;Ha, Yoon-Cheol;Ha, Tae-Hyun;Lee, Hyun-Goo;Kim, Dae-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1612-1614
    • /
    • 2007
  • The owner of underground metallic structures (gas pipeline, oil pipeline, water pipeline, etc) has a burden of responsibility for the corrosion protection in order to prevent big accidents like gas explosion, soil pollution, leakage and so on. So far, Cathodic Protection(CP) technology have been implemented for protection of underground systems. The stray current from DC subway system in Korea has affected the cathodic protection (CP) design of the buried pipelines adjacent to the railroads. In this aspect, KERI has developed a various mitigation method, drainage system through steel bar under the rail, a stray current gathering mesh system, insulation method between yard and main line, distributed ICCP(Impressed Current Cathodic System), High speed response rectifier, restrictive drainage system. We installed the mitigation system at the real field and test of its efficiency in Busan and Seoul, Korea. In this paper, the results of field test, especially, distributed ICCP system is described.

  • PDF

Study on Subsurface Collapse of Road Surface and Cavity Search in Urban Area (도심지 노면하부 지반함몰 및 공동탐사 사례 연구)

  • Chae, Hwi-Young
    • Tunnel and Underground Space
    • /
    • v.27 no.6
    • /
    • pp.387-392
    • /
    • 2017
  • Recently, road cave-ins, also referred to as ground sinking, have become a problem in urban environments. Public utility facilities such as sewage pipelines, communications pipes, gas pipes, power cables, and other types of underground structures are installed below the roads. It was reported that cave-ins are caused by the aging and lack of proper maintenance of underground facilities, as well as by construction problems. A road cave-in is first initiated by the formation of cavities typically induced by the breakage of underground pipelines. The cavities then grow and reach the base of the pavement. The traffic load applied at the surface of the roads causes an abrupt plastic deformation. This type of accident can be considered as a type of disaster. A road cave-in can threaten both human safety and the economy. It may even result in the loss of human life. In the city of Seoul, efforts to prevent damage before cave-ins occur have been prioritized, through a method of discovering and repairing joints through the 3D GPR survey.

Development of Permanent Reference Electrode for Corrosion Monitoring of Underground Metallic Structures (지중 금속구조물 부식감시를 위한 영구매설용 기준전극 개발)

  • Ha, Y.C.;Bae, J.H.;Ha, T.H.;Lee, H.G.;Lee, J.D.;Kim, D.K.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.532-534
    • /
    • 2004
  • The advancement of electronics and telecommunication technologies has forced the risk management system for underground metallic structures to evolve into the remote monitoring and control system. Especially, facilities such as gas pipelines, oil pipelines and water distribution lines might make hazardous effect on human safety without continuous monitoring and control. As a result, pipeline engineers have applied cathodic protection system to prevent the degradation of their facilities by corrosion and carried out a periodic monitoring of the pipe-to-soil (P/S) potentials at numberous test boxes along their pipelines. The latter action on a road in downtowns, however, is so much dangerous that the inspectors should be ready to suffer the threatening of their lives and maintenance. In order to minimize these social costs and hazards, a stand-alone type corrosion monitoring equipment which can be installed in test box, store the P/S data for given Belied and send the data by wired/wireless telecommunications is under development. In order to obtain the exact P/S data, however, a reference electrode should be located as close to the pipeline as possible. Actually, the measured potential by a conventional portable reference electrode contain inevitably an IR drop portion caused by the current flow from the cathodic protection rectifier or the subway railroad. To minimize this error, it is recommended that the reference electrode should be buried within 10 cm from the pipeline. In this paper, we describe the design parameters for fabricating the permanent type reference electrode and the characteristics of the developed reference electrode.

  • PDF