• Title/Summary/Keyword: under-break

Search Result 451, Processing Time 0.023 seconds

Assessment of over / under-break of tunnel utilizing BIM and 3D laser scanner (3차원 레이저 스캐너 및 BIM을 활용한 터널 과대.과소 굴착 평가)

  • Park, Jeong-Jun;Shin, Jae-Chou;Hwang, Ju-Hwan;Lee, Kang-Hyun;Seo, Hyung-Joon;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.437-451
    • /
    • 2012
  • Application of 3D laser scanner to civil engineering is widely studied in various fields such as tunnel, bridge, calculation of earth volume, construction measurement, observation of rock joint, etc. Some studies on utilization of the 3D laser scanner for calculating the over-break and/or under-break of tunnels have also been carried out. However, in the previous research, the scanning data were usually compared with the 2D CAD blueprint results; although the shape of tunnel structure is relatively simple, for precise calculation of the over-break and/or under-break of tunnels, three-dimensional analysis based on BIM is needed. Therefore, in this paper, a new program that calculates the over-break and/or under-break of tunnels using the 3D laser scanner and the BIM is developed; moreover the effective and rapid process of data treatment is proposed. The accuracy of the developed program was verified by applying the new system to a real tunnels construction field.

Determination of Phenolic acids and Flavonol Aglycone Contents in Orostachys japonicus A. Berger Grown under Various Cultivation Conditions

  • Jang, Sang-Hun;Lee, Sang-Gyeong;Kang, Jin-Ho;Park, Jong-Cheol;Shin, Sung-Chul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.5
    • /
    • pp.311-316
    • /
    • 2006
  • The content of four phonolic acids 1-4, and two flavonol aglycones 14 and 15 from Orostachysjaponicus A. Berger grown under night-break and day-length controlled experiments was estimated and compared with those in wild plants. The amount of the phenolic acids 1-4 and the flavonol aglycones 14 and 15 increased with increasing light irradiation under both the night-break and day-length control conditions. It was disclosed that the cultivation conditions such as the night-break and the day-length control were not adversely affect the production of phenolic acids and flavonols in Orostachys japonicus A. Berger extracts.

Analysis of steam generator tube rupture accidents for the development of mitigation strategies

  • Bang, Jungjin;Choi, Gi Hyeon;Jerng, Dong-Wook;Bae, Sung-Won;Jang, Sunghyon;Ha, Sang Jun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.152-161
    • /
    • 2022
  • We analyzed mitigation strategies for steam generator tube rupture (SGTR) accidents using MARS code under both full-power and low-power and shutdown (LPSD) conditions. In general, there are two approaches to mitigating SGTR accidents: supplementing the reactor coolant inventory using safety injection systems and depressurizing the reactor coolant system (RCS) by cooling it down using the intact steam generator. These mitigation strategies were compared from the viewpoint of break flow from the ruptured steam generator tube, the core integrity, and the possibility of the main steam safety valves opening, which is associated with the potential release of radiation. The "cooldown strategy" is recommended for break flow control, whereas the "RCS make-up strategy" is better for RCS inventory control. Under full power, neither mitigation strategy made a significant difference except for on the break flow while, in LPSD modes, the RCS cooldown strategy resulted in lower break and discharge flows, and thus less radiation release. As a result, using the cooldown strategy for an SGTR under LPSD conditions is recommended. These results can be used as a fundamental guide for mitigation strategies for SGTR accidents according to the operational mode.

Plant-scale experiments of an air inflow accident under sub-atmospheric pressure by pipe break in an open-pool type research reactor

  • Donkoan Hwang;Nakjun Choi;WooHyun Jung;Taeil Kim;Yohan Lee;HangJin Jo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1604-1615
    • /
    • 2023
  • In an open-pool type research reactor with a downward forced flow in the core, pipes can be under sub-atmospheric pressure because of the large pressure drop at the reactor core in the atmospheric pool. Sub-atmospheric pressure can result in air inflow into the pipe from the pressure difference between the atmosphere and the inside of the pipe, which in a postulated pipe break scenario can lead to the breakdown of the cooling pump. In this study, a plant-scale experiment was conducted to study air inflow in large piping systems by considering the actual operational conditions of an advanced research reactor. The air inflow rate was measured, and the entrained air was visualized to investigate the behavior of air inflow and flow regime depending on the pipe break size. In addition, the developed drift-flux model for a large vertical pipe with a diameter of 600 mm was compared with other correlations. The flow regime transition in a large vertical pipe under downward flow was also studied using the newly developed drift-flux model. Consequently, the characteristics of two-phase flow in a large vertical pipe were found to differ from those in small vertical pipes where liquid recirculation was not dominant.

Robust Unit Root Tests with an Innovation Variance Break

  • Oh, Yu-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.1
    • /
    • pp.177-182
    • /
    • 2012
  • A structural break in the level as well as in the innovation variance has often been exhibited in economic time series. In this paper we propose robust unit root tests based on a sign-type test statistic when a time series has a shift in its level and the corresponding volatility. The proposed tests are robust to a wide class of partially stationary processes with heavy-tailed errors, and have an exact binomial null distribution. Our tests are not affected by the size or location of the break. We set the structural break under the null and the alternative hypotheses to relieve a possible vagueness in interpreting test results in empirical work. The null hypothesis implies a unit root process with level shifts and the alternative connotes a stationary process with level shifts. The Monte Carlo simulation shows that our tests have stable size than the OLSE based tests.

RCD success criteria estimation based on allowable coping time

  • Ham, Jaehyun;Cho, Jaehyun;Kim, Jaewhan;Kang, Hyun Gook
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.402-409
    • /
    • 2019
  • When a loss of coolant accident (LOCA) occurs in a nuclear power plant, accident scenarios which can prevent core damage are defined based on break size. Current probabilistic safety assessment evaluates that core damage can be prevented under small-break LOCA (SBLOCA) and steam generator tube rupture (SGTR) with rapid cool down (RCD) strategy when all safety injection systems are unavailable. However, previous research has pointed out a limitation of RCD in terms of initiation time. Therefore, RCD success criteria estimation based on allowable coping time under a SBLOCA or SGTR when all safety injection systems are unavailable was performed based on time-line and thermal-hydraulic analyses. The time line analysis assumed a single emergency operating procedure flow, and the thermal hydraulic analysis utilized MARS-KS code with variables of break size, cooling rate, and operator allowable time. Results show while RCD is possible under SGTR, it is impossible under SBLOCA at the APR1400's current cooling rate limitation of 55 K/hr. A success criteria map for RCD under SBLOCA is suggested without cooling rate limitation.

Break-even Analysis with Learning Effect Under Inflation

  • Kim, Ji-Soo;Kim, Jin-Wook;Rim, Jeong-Mook
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.14 no.1
    • /
    • pp.91-101
    • /
    • 1988
  • Break-even analysis is a simple and useful tool in decisions and planning activities though its use is somewhat limited to short-term analysis. The subject is discussed in the fields of engineering economics, production management, cost and managerial accounting, finance, marketing, and so on. Conventional break-even analysis suits the case of stable price and low interest rate. In this paper, we try to overcome the limit by considering following factors, namely, time value of money, depreciation, tax, and capital gains. Also, considering learning effect, we increase applicability to a new project which raises certain changes such as a replacement of production process, an employee turnover, etc. Thus, we suggest a model which has a dynamic break-even quantity per period for the project. Furthermore, we examine the effect of inflation in break-even analysis.

  • PDF

A Study on the Break-down Characteristics of a Screw-type Centrifugal Pump due to Air Entrainment (공기흡입에 의한 스크류식 원심펌프의 양수불능 특성에 관한 연구)

  • Kim, You-Taek
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.3 s.20
    • /
    • pp.58-63
    • /
    • 2003
  • The performance of turbo pump drops rapidly and it gets into break-down when the void fraction reaches above the threshold value because the impeller flow passage is choked up with air bubbles. Phenomenological understanding of break-down and pumping recovery mechanisms under air-water two-phase flow conditions are therefore important for pump designers and essential assignment for researchers. In this paper, we investigated the characteristics of break-down and pumping recovery due to entrained air occurring inside a screw-type centrifugal pump which has a wide flow passage mainly through the findings of suction and discharge pressures, rotational speed, flow rate measurements and visualization.

Lifetime Prediction and Aging Behaviors of Nitrile Butadiene Rubber under Operating Environment of Transformer

  • Qian, Yi-hua;Xiao, Hong-zhao;Nie, Ming-hao;Zhao, Yao-hong;Luo, Yun-bai;Gong, Shu-ling
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.918-927
    • /
    • 2018
  • Based on the actual operating environment of transformer, the aging tests of nitrile butadiene rubber (NBR) were conducted systematically under four conditions: in air, in transform oil, under compression in air and under compression in transform oil to studythe effect of high temperature, transform oil and compression stress simultaneously on the thermal aging behaviors of nitrile butadiene rubber and predict the lifetime. The effects of liquid media and compression stress simultaneously on the thermal aging behaviors of nitrile butadiene rubber were studied by using characterization methods such as IR spectrosc-opy, thermogravimetric measurements, Differential Scanning Calorimetry (DSC) measurements and mechanical property measurements. The changes in physical properties during the aging process were analyzed and compared. Different aging conditions yielded materials with different properties. Aging at $70^{\circ}C$ under compression stress in oil, the change in elongation at break was lower than that aging in oil, but larger than that aging under compression in air. The compression set or elongation at break as evaluation indexes, 50% as critical value, the lifetime of NBR at $25^{\circ}C$ was predicted and compared. When aging under compression in oil, the prediction lifetime was lower than in air and under compression in air, and in oil. It was clear that when predicting the service lifetime of NBR in oil sealing application, compression and media liquid should be involved simultaneously. Under compression in oil, compression set as the evaluation index, the prediction lifetime of NBR was shorter than that of elongation at break as the evaluation index. For the life prediction of NBR, we should take into account of the performance trends of NBR under actual operating conditions to select the appropriate evaluation index.

LEAK-BEFORE-BREAK ANALYSIS OF THERMALLY AGED NUCLEAR PIPE UNDER DIFFERENT BENDING MOMENTS

  • LV, XUMING;LI, SHILEI;ZHANG, HAILONG;WANG, YANLI;WANG, ZHAOXI;XUE, FEI;WANG, XITAO
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.712-718
    • /
    • 2015
  • Cast duplex stainless steels are susceptible to thermal aging during long-term service at temperatures ranging from $280^{\circ}C$ to $450^{\circ}C$. To analyze the effect of thermal aging on leak-before-break (LBB) behavior, three-dimensional finite element analysis models were built for circumferentially cracked pipes. Based on the elasticeplastic fracture mechanics theory, the detectable leakage crack length calculation and J-integral stability assessment diagram approach were carried out under different bending moments. The LBB curves and LBB assessment diagrams for unaged and thermally aged pipes were constructed. The results show that the detectable leakage crack length for thermally aged pipes increases with increasing bending moments, whereas the critical crack length decreases. The ligament instability line and critical crack length line for thermally aged pipes move downward and to the left, respectively, and unsafe LBB assessment results will be produced if thermal aging is not considered. If the applied bending moment is increased, the degree of safety decreases in the LBB assessment.