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Abstract
A structural break in the level as well as in the innovation variance has often been exhibited in economic

time series. In this paper we propose robust unit root tests based on a sign-type test statistic when a time series
has a shift in its level and the corresponding volatility. The proposed tests are robust to a wide class of partially
stationary processes with heavy-tailed errors, and have an exact binomial null distribution. Our tests are not
affected by the size or location of the break. We set the structural break under the null and the alternative
hypotheses to relieve a possible vagueness in interpreting test results in empirical work. The null hypothesis
implies a unit root process with level shifts and the alternative connotes a stationary process with level shifts. The
Monte Carlo simulation shows that our tests have stable size than the OLSE based tests.
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1. Introduction

Since the seminal work of Perron (1990), a number of unit root tests with structural breaks have
been developed. The presence of structural breaks leads to non-rejection of the null hypothesis of
unit root and structural breaks are easily witnessed financial time series. Most existing unit root
tests with breaks focus on the number of breaks, and on how to find the location of breaks, see inter
alia, Banerjee et al. (1992), Zivot and Andrews (1992), Perron and Vogelsang (1992), Amsler and
Lee (1995), Lumsdaine and Papell (1997), Clemente et al. (1998), Papell and Prodan (2003), and
Lee and Strazicich (2003), Kapetanios (2005), and Cavaliere and Georgiev (2007). Contrary to the
aforementioned literatures that mostly focused on the behavior of structural breaks in the level or
trend of a time series, Hamori and Tokihisa (1997), Hsu (1977), and Kim et al. (2002) and Sen
(2009) concentrate on the structural change in variance. Hamori and Tokihisa (1997), Hsu (1977),
and Kim et al. (2002) consider a break only in the variance. Sen (2009) proposes unit root test with a
contemporaneous break in the level and variance. The test statistic extends Perron’s (1990) test using
Kim et al.’s (2002) strategy based on a modified GLS transformation.

However, there is another important stylized feature of financial time series that should not go
unnoticed: financial time series usually follow heavy-tailed distribution. We propose unit root tests
with a contemporaneous break in the level and the variance. We extend So and Shin’s (2001) method-
ology to a univariate time series with a break. Modifications and variations of the So and Shin (2001)
methodology to other models are provided by, for example, Oh and So (2004) to panel model, Oh and
So (2008) to cointegration test, and Shin et al. (2009) to panel model with cross sectional dependence.
All of these unit root tests are robust to a class of heavy-tailed distributions.

The distributions of our test statistics under the null hypothesis are exactly binomial distribution
so that exact test can be achieved. The asymptotics are standard normal distributions. Both the size
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and the location of the breakpoints do not affect the distribution. This is a nice feature and a great
contrast to most of existing literature having complex distributions under the null hypothesis. We
also consider the breaks under the null and the alternative hypothesis. This allows the alternative
hypothesis to unambiguously imply a stationary time series with a break.

The remainder of this paper is organized as follows. Section 2 proposes the test statistics and in-
vestigates the asymptotic null distributions of the tests. Section 3 provides the Monte Carlo simulation
results and Section 4 concludes.

2. Test Statistics

We assume that the stochastic process yt has T time series observations and is generated by the AR(1)
process {

yt = µt + ut,
ut = ρut−1 + σtϵt, t = 1, . . . ,T, (2.1)

where the initial value y0 is a given (fixed or random) number; and µt = µ if t ≤ TK and µt = µ∗

otherwise. The TK stands for the break date. The σt = σ if t ≤ TK and σt = σ∗ otherwise; and ϵt

satisfies the following Assumption 1.

Assumption 1. The {ϵt}Tt=1 is a sequence of errors which have zero conditional medians and have no
atom at zero given Ft−1 where Ft is a σ-field generated by (y0, y1, . . . , yt).

We note that Assumption 1 admits a wide class of heavy-tailed errors. In this framework we are inter-
ested in testing for the null hypothesis that H0 : ρ = 1 against the alternative hypothesis that H1 : |ρ| <
1. In order to motivate the robust sign test, we first introduce a signed version of student’s t-statistic for
the case of no structural break. The usual t-statistic is t =

∑T
t=1(yt−yt−1)(yt−1− ȳ)/σ̂(

∑T
t=1(yt−1− ȳ)2)1/2

where ȳ =
∑T

t=1 yt/T , σ̂2 =
∑T

t=1((yt−ȳ)−ρ̂(yt−1−ȳ))2/(T−1) and ρ̂ =
∑T

t=1(yt−ȳ)(yt−1−ȳ)/
∑T

t=1(yt−1−
ȳ)2. So and Shin (2001) substitute sign[(yt − yt−1)(yt−1 − µ̂t−1)] for (yt − yt−1)(yt−1 − ȳ) in the numerator
of t, and then construct a new test statistic, S =

∑T
t=1 sign(yt − yt−1)sign(yt−1 − µ̂t−1), where µ̂t is the

median of y1, . . . , yt and is Ft-measurable. The median makes the test statistic invariant to monotone
data transformation, and recursive method increases the power of the test statistic, see So and Shin
(2001) for interesting finite sample properties of the test statistics such as the exact null distribution
and the invariance to monotone data transformation. From this consideration, let S (1)

TK
be test statistic

for the first regime,

S (1)
TK
=

TK∑
t=2

sign(yt − yt−1)sign(yt−1 − µ̂t−1) (2.2)

and S (2)
TK

be test statistic for the second regime,

S (2)
TK
=

T∑
t=TK+2

sign(yt − yt−1)sign
(
yt−1 − µ̂∗t−1

)
, (2.3)

where µ̂t is the median of y1,. . . ,yt and µ̂∗t is the median of yTK+1,. . . ,yT . We introduce a robust sign
test statistic, tR, defined by

tR = S (1)
TK
+ S (2)

TK
. (2.4)
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Table 1: Size for normal distributions

T λ
σ2/σ1

4.00 2.50 1.67 1.25 1.00 0.80 0.60 0.40 0.25
tR 0.043 0.041 0.042 0.045 0.042 0.041 0.044 0.042 0.045

0.1 tp 0.046 0.045 0.044 0.048 0.051 0.055 0.067 0.112 0.223
ts 0.053 0.053 0.051 0.052 0.053 0.053 0.053 0.054 0.057
tR 0.042 0.042 0.043 0.041 0.044 0.043 0.044 0.041 0.042

100 0.3 tp 0.060 0.055 0.050 0.048 0.048 0.057 0.073 0.124 0.205
ts 0.052 0.052 0.052 0.053 0.052 0.052 0.050 0.054 0.054
tR 0.040 0.041 0.041 0.040 0.042 0.040 0.041 0.043 0.040

0.5 tp 0.114 0.086 0.060 0.054 0.050 0.052 0.063 0.083 0.110
ts 0.053 0.052 0.049 0.055 0.051 0.053 0.053 0.053 0.053
tR 0.050 0.048 0.049 0.051 0.050 0.051 0.049 0.050 0.049

0.1 tp 0.046 0.045 0.047 0.048 0.049 0.055 0.070 0.112 0.232
ts 0.053 0.051 0.052 0.052 0.050 0.050 0.053 0.049 0.052
tR 0.051 0.049 0.050 0.052 0.051 0.052 0.052 0.053 0.052

200 0.3 tp 0.059 0.055 0.051 0.045 0.049 0.056 0.076 0.123 0.208
ts 0.051 0.050 0.051 0.048 0.050 0.051 0.052 0.050 0.051
tR 0.050 0.048 0.051 0.052 0.049 0.050 0.051 0.050 0.051

0.5 tp 0.118 0.086 0.065 0.054 0.050 0.053 0.063 0.085 0.116
ts 0.052 0.052 0.052 0.053 0.051 0.051 0.052 0.051 0.053

Note: tR denotes the proposed test; tp stands for Perron’s test; and ts represents Sen’s test

Now Assumption 1 enables us to identify the exact null distribution of the test statistics that is sum-
marized in the following Theorem. Here⇒ stands for the convergence in distribution.

Theorem 1. Consider model (2.1) and assume {ϵt} satisfies Assumption 1. Then we have, under H0,
(tR + T − 2)/2 ∼ BIN(T − 2, 0.5), and tR/

√
T ⇒ N(0, 1), as T → ∞.

Proof: (Theorem 1) Since (S (1)
TK
+TK −1)/2∼BIN(TK −1, 0.5) under the null hypothesis for the first

regime from Assumption 1, and (S (2)
TK
+ T − TK − 1)/2 ∼ BIN(T − TK − 1, 0.5) we get the first result

immediately. The second result follows directly from the Lindberg-Levy central limit theorem. �

Our robust sign test statistic has several desirable properties. First, the exact binomial null dis-
tribution of the test statistic enables us to compute the p-value of the test for any finite T . Second,
in contrast to other existing unit root tests, the test statistic is invariant to arbitrary monotone data
transformations for each group. Third, we have no need to calculate the estimates for σ and σ∗.

3. Simulations

In this section, we present the results of the Monte Carlo experiments to investigate the finite sample
performance of the proposed tests. For the case of single break, we compare our tests with the Perron
(1990), which is the baseline test statistic, and the Sen (2009) tests. We compare with Sen (2009)
because this considers contemporaneous shifts in the level and variance but heavy-tailed errors are
not allowed. We compare these statistics for the case of a structural break in the level with a contem-
poraneous variance shift and the case of a level shift with a homogeneous variance (σ∗/σ = 1.0).

We set T={100, 200}; λ = {0.1, 0.3, 0.5}; TK = [λT ]; the [x] indicates the greatest integer less
than or equal to x; µ = 0, µ∗ ∼ N(0, 1); σ∗/σ = {4, 2.5, 1.67, 1.25, 1, 0.8, 0.6, 0.4, 0.25}; y0 = 0;
and ϵt ∼ N(0, 1). Once these parameters are generated independently of ϵt, they fixed throughout
replication and we replicate 10,000 times. Table 1 shows the sizes of the two test statistics at the 5%
level.
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Table 2: Size for heavy-tailed distributions
T λ N(0, 1)→ VM(1, 25) VM(1, 25)→ N(0, 1) N(0, 1)→ Cauchy Cauchy→ N(0, 1)

tR 0.042 0.043 0.044 0.043
0.3 tp 0.078 0.080 0.130 0.128

100 ts 0.073 0.071 0.099 0.101
tR 0.043 0.043 0.045 0.046

0.5 tp 0.075 0.072 0.117 0.119
ts 0.072 0.067 0.126 0.105
tR 0.053 0.055 0.051 0.049

0.3 tp 0.067 0.067 0.136 0.135

200 ts 0.061 0.059 0.115 0.107
tR 0.049 0.050 0.051 0.053

0.5 tp 0.066 0.065 0.115 0.117
ts 0.062 0.058 0.109 0.105

Note: tR denotes the proposed test; tp stands for Perron’s test; and ts represents Sen’s test
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Figure 1: Thai Baht / US $ Exchange Rate, 1985:01–2007:12

The simulation results show that the sizes of our test and Sen’s test are stable for all cases. Mean-
while Perron’s test shows distorted sizes when there are contemporaneous variance breaks.

We conduct another simulation for the case of heavy-tailed errors. A time series is divided in two
parts and the first part follows a standard normal distribution and the second part follows VM(1, 25) =
0.95N(0, 1) + 0.05N(0, 25) or Cauchy distribution. The result is summarized in Table 2.

Perron’s test also shows unstable result and Sen’s test statistic shows unstable result for this cases;
however, our test statistic shows a stable size.

4. An Empirical Illustration

We apply the proposed test statistic to the data that is used in Sen (2009), the exchange rate between
the Thailand Baht and the U.S. $ using data over the period 1985:01–2007:12, see Figure 1.

The break date is specified as June 1997 in Sen (2009), and we follow this strategy. Perron’s
(1990) unit root statistic is equal to −4.0566 and results in mean-break stationary. Meanwhile Sen’s
(2009) unit root statistic is equal to −2.7003 and the null hypothesis cannot be rejected. Sen (2009)
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points out that allowing for the presence of a break in the innovation variance reverses the conclusion
regarding the evidence of the presence of a unit root in the Baht/$ series. Our test statistic is equal to
0.3612 and the result is consistent with Sen’s (2009). Our result indicates that the time series has unit
root with break in the mean and variance.

5. Concluding Remarks

In this paper, we propose a sign-type unit root tests for a time series with level shifts contempora-
neously in the mean and the volatility. The proposed tests are robust to a wide class of heavy-tailed
errors. The distributions of the proposed tests under the null hypothesis are a binomial distribution
and limiting distribution is a standard normal distribution. The distributions are not affected by the
size and the location of the break.

In the Monte Carlo study, the proposed tests show stable size for heavy-tailed distributions; how-
ever, comparing test statistics show an unstable size for heavy-tailed errors.
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