• Title/Summary/Keyword: uncoupling

Search Result 118, Processing Time 0.044 seconds

Induction of Kanamycin Resistance Gene of Plasmid pUCD615 by Benzoic Acid and Phenols

  • Mitchell Robert J.;Hong Han-Na;Gu Man-Bock
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.7
    • /
    • pp.1125-1131
    • /
    • 2006
  • A kan'::luxCDABE fusion strain that was both highly bioluminescent and responsive to benzoic acid was constructed by transforming E. coli strain W3110 with the plasmid pUCDK, which was constructed by digesting and removing the 7-kb KpnI fragment from the promoterless luxCDABE plasmid pUCD615. Experiments using buffered media showed that this induction was dependent on the pH of the media, which influences the degree of benzoic acid protonation, and the expression levels seen are likely due to acidification of the cytoplasm by uncoupling of benzoic acid. Consequently, the sensitivity of this strain for benzoic acid was increased by nearly 20-fold when the pH was shifted from 8.0 to 6.5. Benzoic acid derivatives and several phenolics also resulted in significantly increased bioluminescent signals. Although these compounds are known to damage membranes and induce the heat-shock response within E. coli, bacterial strains harboring mutations in the fadR and rpoH genes, which are responsible for fatty acid biosynthesis during membrane stress and induction of the heat-shock response, respectively, showed that these mutations had no effect on the responses observed.

Troglitazone Regulates white Adipose Tissue Metabolism by Activating Genes Involved in Fatty Acid ${\beta}$-Oxidation in High Fat Diet-fed C57BL/6J Mice

  • Jeong, Sun-Hyo;Yoon, Mi-Chung
    • Biomedical Science Letters
    • /
    • v.12 no.4
    • /
    • pp.319-327
    • /
    • 2006
  • This study aimed to determine whether troglitazone stimulates genes related to fatty acid ${\beta}$-oxidation, leading to modulation of white adipose tissue (WAT) metabolism in high fat diet-fed mice. Female C57BL/6J mice were randomly divided into two groups (n=10/group). After they received either a high fat diet or the same high fat diet supplemented with troglitazone for 4 weeks, the effects of troglitazone on gene expression and physiology of WAT were measured using Northern, histological and serological analyses. Administration of troglitazone induced the expression of genes involved in mitochondrial and peroxisomal fatty acid ${\beta}$-oxidation in mesenteric WAT. Troglitazone also significantly increased uncoupling protein 2 mRNA levels. The changes in WAT gene expression were accompanied by reductions in circulating levels of free fatty acids and triglycerides as well as glucose and insulin. Histological studies showed that troglitazone treatment decreased the average size of adipocytes in mesenteric WAT. These results suggest that troglitazone-stimulated WAT expression of genes associated with fatty acid ${\beta}$-oxidation regulates WAT metabolism of high fat diet-fed mice, contributing to improvement of insulin sensitivity.

  • PDF

Uncoupling Protein, UCP-4 May Be Involved in Neuronal Defects During Aging and Resistance to Pathogens in Caenorhabditis elegans

  • Cho, Injeong;Hwang, Gyu Jin;Cho, Jeong Hoon
    • Molecules and Cells
    • /
    • v.39 no.9
    • /
    • pp.680-686
    • /
    • 2016
  • Uncoupling proteins (UCPs) are mitochondrial inner membrane proteins that function to dissipate proton motive force and mitochondrial membrane potential. One UCP has been identified in Caenorhabditis elegans (C. elegans), namely UCP-4. In this study, we examined its expression and localization using a GFP marker in C. elegans. ucp-4 was expressed throughout the body from early embryo to aged adult and UCP-4 was localized in the mitochondria. It is known that increased mitochondrial membrane protential leads to a reactive oxygen species (ROS) increase, which is associated with age-related diseases, including neurodegenerative diseases in humans. A ucp-4 mutant showed increased mitochondrial membrane protential in association with increased neuronal defects during aging, and the neurons of ucp-4 overexpressing animals showed decreased neuronal defects during aging. These results suggest that UCP-4 may be involved in neuroprotection during aging via relieving mitochondrial membrane protential. We also investigated the relationship between UCP-4 and innate immunity because increased ROS can affect innate immunity. ucp-4 mutant displayed increased resistance to the pathogen Staphylococcus aureus compared to wild type. The enhanced immunity in the ucp-4 mutant could be related to increased mitochondrial membrane protential, presumably followed by increased ROS. In summary, UCP-4 might have an important role in neuronal aging and innate immune responses through mediating mitochondrial membrane protential.

Ginsenoside Rg1 promotes browning by inducing UCP1 expression and mitochondrial activity in 3T3-L1 and subcutaneous white adipocytes

  • Lee, Kippeum;Seo, Young-Jin;Song, Ji-Hyoen;Chei, Sungwoo;Lee, Boo-Yong
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.589-599
    • /
    • 2019
  • Background: Panax ginseng Meyer is known as a conventional herbal medicine, and ginsenoside Rg1, a steroid glycoside, is one of its components. Although Rg1 has been proved to have an antiobesity effect, the mechanism of this effect and whether it involves adipose browning have not been elucidated. Methods: 3T3-L1 and subcutaneous white adipocytes from mice were used to access the thermogenic effect of Rg1. Adipose mitochondria and uncoupling protein 1 (UCP1) expression were analyzed by immunofluorescence. Protein level and mRNA of UCP1 were also evaluated by Western blotting and realtime polymerase chain reaction, respectively. Results: Rg1 dramatically enhanced expression of brown adipocyte-especific markers, such as UCP1 and fatty acid oxidation genes, including carnitine palmitoyltransferase 1. In addition, it modulated lipid metabolism, activated 5' adenosine monophosphate (AMP)-activated protein kinase, and promoted lipid droplet dispersion. Conclusions: Rg1 increases UCP1 expression and mitochondrial biogenesis in 3T3-L1 and subcutaneous white adipose cells isolated from C57BL/6 mice. We suggest that Rg1 exerts its antiobesity effects by promoting adipocyte browning through activation of the AMP-activated protein kinase pathway.

UCP2 KO mice exhibit ameliorated obesity and inflammation induced by high-fat diet feeding

  • Kim, Do Hyun;Kim, Hye Jin;Seong, Je Kyung
    • BMB Reports
    • /
    • v.55 no.10
    • /
    • pp.500-505
    • /
    • 2022
  • Uncoupling protein 2 (Ucp2) was first introduced as a member of Uncoupling protein family and a regulator of ROS formation; however, its role in adipose tissue is not fully understood. In the present study, we have investigated the role of Ucp2 against high-fat diet (HFD)-induced obesity in epididymal white adipose tissue (eWAT) and browning of inguinal white adipose tissue (iWAT). Diet-induced obesity is closely related to macrophage infiltration and the secretion of pro-inflammatory cytokines. Macrophages surround adipocytes and form a crown-like-structure (CLS). Some reports have suggested that CLS formation requires adipocyte apoptosis. After 12 weeks of HFD challenge, Ucp2 knockout (KO) mice maintained relatively lean phenotypes compared to wild-type (WT) mice. In eWAT, macrophage infiltration, CLS formation, and inflammatory cytokines were reduced in HFD KO mice compared to HFD WT mice. Surprisingly, we found that apoptotic signals were also reduced in the Ucp2 KO mice. Our study suggests that Ucp2 deficiency may prevent diet-induced obesity by regulating adipocyte apoptosis. However, Ucp2 deficiency did not affect the browning capacity of iWAT.

Structural Conservation and Food Habit-related Liver Expression of Uncoupling Protein 2 Gene in Five Major Chinese Carps

  • Liao, Wan-Qin;Liang, Xu-Fang;Wang, Lin;Fang, Ling;Lin, Xiaotao;Bai, Junjie;Jian, Qing
    • BMB Reports
    • /
    • v.39 no.4
    • /
    • pp.346-354
    • /
    • 2006
  • The full-length cDNA of grass carp (Ctenopharyngodon idellus) and silver carp (Hypophthalmichthys molitrix) uncoupling protein 2 (UCP2) was obtained from liver. The grass carp UCP2 cDNA was determined to be 1152 bp in length with an open reading frame that encodes 310 amino acids. Five introns (Intron 3, 4, 5, 6 and 7) in the translated region, and partial sequence of Intron 2 in the untranslated region of grass carp UCP2 gene were also obtained. Gene structure comparison between grass carp and mammalian (human and mouse) UCP2 gene shows that, the UCP2 gene structure of grass carp is much similar to that of human and mouse. Partial UCP2 cDNA sequences of bighead carp (Aristichthys nobilis) and mud carp (Cirrhinus molitorella), were further determined. Together with the common carp (Cyprinus carpio) UCP2 sequence from GenBank (AJ243486), multiple alignment result shows that the nucleotide and amino acid sequences of the UCP2 gene, were highly conserved among the five major Chinese carps that belong to four subfamilies. Using beta-actin as control, the ratio UCP2/beta-actin mRNA (%) was determined to be $149.4{\pm}15.6$ (common carp), $127.4{\pm}22.1$ (mud carp), $96.7{\pm}12.7$ (silver carp), $94.1{\pm}26.8$ (bighead carp) and $63.7{\pm}16.2$ (grass carp). The relative liver UCP2 expression of the five major Chinese carps, shows a close relationship with their food habit: benthos and detrituseating fish (common carp and mud carp) > planktivorious fish (silver carp and bighead carp) > herbivorious fish (grass carp). We suggest that liver UCP2 might be important for Chinese carps to detoxify cyanotoxins and bacteria in debris and plankton food.

Polymorphisms in the uncoupling protein 3 gene and their associations with feed efficiency in chickens

  • Jin, Sihua;Yang, Lei;He, Tingting;Fan, Xinfeng;Wang, Yiqiu;Ge, Kai;Geng, Zhaoyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.9
    • /
    • pp.1401-1406
    • /
    • 2018
  • Objective: The uncoupling protein 3 (UCP3) is a member of the mitochondrial anion carrier superfamily and has crucial effects on growth and feed efficiency in many species. Therefore, the objective of the present study was to examine the association of polymorphisms in the UCP3 gene with feed efficiency in meat-type chickens. Methods: Six single nucleotide polymorphisms (SNPs) of the UCP3 gene were chosen to be genotyped using matrix-assisted laser desorption-ionization time-of-flight mass spectrometry in meat-type chicken populations with 724 birds in total. Body weight at 49 (BW49) and 70 days of age (BW70) and feed intake (FI) in the interval were collected, then body weight gain (BWG) and feed conversion ratio (FCR) were calculated individually. Results: One SNP with a low minor allele frequency (<1%) was removed by quality control and data filtering. The results showed that rs13997809 of UCP3 was significantly associated with BWG and FCR (p<0.05), and that rs13997811 had significant effects on BW70 and BWG (p<0.05). Rs13997812 of UCP3 was strongly associated with BW70, FI, and FCR (p<0.05). Furthermore, individuals with AA genotype of rs13997809 had significantly higher BWG and lower FCR (p<0.05) than those with AT genotype. The GG individuals showed strongly higher BW70 and BWG than AA birds in rs13997811 (p<0.05). Birds with the TT genotype of rs13997812 had significantly greater BW70 and lower FCR compared with the CT birds (p<0.05). In addition, the TAC haplotype based on rs13997809, rs13997811, and rs13997812 showed significant effects on BW70, FI, and FCR (p<0.05). Conclusion: Our results therefore demonstrate important roles for UCP3 polymorphisms in growth and feed efficiency that might be used in meat-type chicken breeding programs.