Induction of Kanamycin Resistance Gene of Plasmid pUCD615 by Benzoic Acid and Phenols

  • Mitchell Robert J. (National Research Laboratory on Environmental Biotechnology, Gwangju Institute of Science and Technology, (GIST)) ;
  • Hong Han-Na (National Research Laboratory on Environmental Biotechnology, Gwangju Institute of Science and Technology, (GIST)) ;
  • Gu Man-Bock (School of Life Sciences and Biotechnology, Korea University)
  • Published : 2006.07.01

Abstract

A kan'::luxCDABE fusion strain that was both highly bioluminescent and responsive to benzoic acid was constructed by transforming E. coli strain W3110 with the plasmid pUCDK, which was constructed by digesting and removing the 7-kb KpnI fragment from the promoterless luxCDABE plasmid pUCD615. Experiments using buffered media showed that this induction was dependent on the pH of the media, which influences the degree of benzoic acid protonation, and the expression levels seen are likely due to acidification of the cytoplasm by uncoupling of benzoic acid. Consequently, the sensitivity of this strain for benzoic acid was increased by nearly 20-fold when the pH was shifted from 8.0 to 6.5. Benzoic acid derivatives and several phenolics also resulted in significantly increased bioluminescent signals. Although these compounds are known to damage membranes and induce the heat-shock response within E. coli, bacterial strains harboring mutations in the fadR and rpoH genes, which are responsible for fatty acid biosynthesis during membrane stress and induction of the heat-shock response, respectively, showed that these mutations had no effect on the responses observed.

Keywords

References

  1. Applegate, B. M., S. R. Kehrmeyer, and G. S. Sayler. 1998. A chromosomally based tod-luxCDABE whole-cell reporter for benzene, toluene, ethybenzene, and xylene (BTEX) sensing. Appl. Environ. Microbiol. 64: 2730-2735
  2. Belkin, S., D. R. Smulski, A. C. Vollmer, T. K. Van Dyk, and R. A. LaRossa. 1996. Oxidative stress detection with Escherichia coli harboring a katG'::lux fusion. Appl. Environ. Microbiol. 62: 2252-2256
  3. Bertin, P., P. Lejeune, C. Colson, and A. Danchin. 1992. Mutations in bglY, the structural gene for the DNA-binding protein H1 of Escherichia coli, increase the expression of the kanamycin resistance gene carried by plasmid pGR71. Mol. Gen. Genet. 233: 184-192 https://doi.org/10.1007/BF00587578
  4. Booth, I. R. and R. G. Kroll. 1989. The preservation of foods by low pH, pp. 119-160. In G. W. Gould (ed.). Mechanisms of Action of Food Preservation Procedures. Elsevier, London
  5. Burlage, R. S., G. S. Sayler, and F. Larimer. 1990. Monitoring of naphthalene catabolism by bioluminescence with nah-Iux transcriptional fusions. J. Bacteriol. 172: 4749-4757 https://doi.org/10.1128/jb.172.9.4749-4757.1990
  6. Choi, S. H. and M. B. Gu. 2001. Phenolic toxicity-detection and classification through the use of a recombinant bioluminescent Escherichia coli. Environ. Toxicol. Chem. 20: 248-255 https://doi.org/10.1897/1551-5028(2001)020<0248:PTDACT>2.0.CO;2
  7. Comes, J. E. and R. B. Beelman. 2002. Addition of fumaric acid and sodium benzoate as an alternative method to achieve a 5-log reduction of Escherichia coli O157:H7 populations in apple cider. J. Food Prot. 65: 476-483 https://doi.org/10.4315/0362-028X-65.3.476
  8. Cunningham, P. R. and D. P. Clark. 1986. The use of suicide substrates to select mutants of Escherichia coli lacking enzymes of alcohol fermentation. Mol. Gen. Genet. 205: 487-493 https://doi.org/10.1007/BF00338087
  9. Dollard, M. A. and P. Billard. 2003. Whole-cell bacterial sensors for the monitoring of phosphate bioavailability. J. Microbiol. Methods 55: 221-229 https://doi.org/10.1016/S0167-7012(03)00164-7
  10. Dorn, J. G., R. J. Frye, and R. M. Maier. 2003. Effect of temperature, pH, and initial cell number on luxCDABE and nah gene expression during naphthalene and salicylate catabolism in the bioreporter organism Pseudomonas putida RB 1353. Appl. Environ. Microbiol. 69: 2209-2216 https://doi.org/10.1128/AEM.69.4.2209-2216.2003
  11. Gu, M. B., J. Min, and R. A. LaRossa. 2000. Bacterial bioluminescent emission from recombinant Escherichia coli harboring a recA::luxCDABE fusion. J. Biochem. Biophys. Methods 45: 45-56 https://doi.org/10.1016/S0165-022X(00)00100-7
  12. Hill, C. W. and B. W. Harnish. 1981. Inversions between ribosomal RNA genes of Escherichia coli. Proc. Natl. Acad. Sci. USA 78: 7069-7072
  13. Koodie, L. and A. M. Dhople. 2001. Acid tolerance of Escherichia coli O157:H7 and its survival in apple juice. Microbios 104: 167-175
  14. Krebs, H. A., D. Wiggins, M. Stubbs, A. Sols, and F. Bedoya. 1983. Studies on the mechanism of the antifungal action of benzoate. Biochem. J. 214: 657-663 https://doi.org/10.1042/bj2140657
  15. Lambert, L. A., K. Abshire, D. Blankenhorn, and J. L. Slonczewski. 1997. Proteins induced in Escherichia coli by benzoic acid. J. Bacteriol. 179: 7595-7599 https://doi.org/10.1128/jb.179.23.7595-7599.1997
  16. Lee, H. J. and M. B. Gu. 2003. Construction of a sodA::luxCDABE fusion Escherichia coli: Comparison with a katG fusion strain through their responses to oxidative stresses. Appl. Microbiol. Biotechnol. 60: 577-580 https://doi.org/10.1007/s00253-002-1168-4
  17. Lejeune, P., P. Bertin, C. Walon, K. Willemot, C. Colson, and A. Danchin. 1989. A locus involved in kanamycin, chloramphenicol and L-serine resistance is located in the bgIY-galU region of the Escherichia coli K12 chromosome. Mol. Gen. Genet. 218: 361-363 https://doi.org/10.1007/BF00331292
  18. Masuda, S., Y. Hara-Kudo, and S. Kumagai. 1998. Reduction of Escherichia coli O157:H7 populations in soy sauce, a fermented seasoning. J. Food Prot. 61: 657 -661 https://doi.org/10.4315/0362-028X-61.6.657
  19. May, G., P. Dersch, M. Haardt, A. Middendorf, and E. Bremer. 1990. The osmZ (bglY) gene encodes the DNA-binding protein H-NS (H1a), a component of the Escherichia coli K12 nucleoid. Mol. Gen. Genet. 224: 81-90
  20. Min, J. and M. B. Gu. 2004. Adaptive responses of Escherichia coli for oxidative and protein damage using bioluminescence reporters. J. Microbiol. Biotechnol. 14: 466-469
  21. Min, J., E. J. Kim, R. A. LaRossa, and M. B. Gu. 1999. Distinct responses of a recA::luxCDABE Escherichia coli strain to direct and indirect DNA damaging agents. Mutat. Res. 442: 61-68 https://doi.org/10.1016/S1383-5718(99)00059-5
  22. Mitchell, R. J., J. M. Ahn, and M. B. Gu. 2005. Comparison of Photorhabdus luminescens and Vibrio fischeri lux fusions to study gene expression patterns. J. Microbiol, Biotechnol. 15: 48-54
  23. Neidhardt, F. C. and R. A. VanBogelen. 1981. Positive regulatory gene for temperature-controlled proteins in Escherichia coli. Biochem. Biophys. Res. Commun. 100: 894-900 https://doi.org/10.1016/S0006-291X(81)80257-4
  24. Rogowsky, P. M., T. J. Close, J. A. Chimera, J. J. Shaw, and C. I. Kado. 1987. Regulation of the vir genes of Agrobacterium tumefaciens plasmid pTiC58. J. Bacteriol. 169: 5101-5112 https://doi.org/10.1128/jb.169.11.5101-5112.1987
  25. Van Dyk, T. K., W. R. Majarian, K. B. Konstantinov, R. M. Young, P. S. Dhurjati, and R. A. LaRossa. 1994. Rapid and sensitive pollutant detection by induction of heat shock genebioluminescence gene fusions. Appl. Environ. Microbiol. 60: 1414-1420
  26. Van Dyk, T. K., D. R. Smulski, T. R. Reed, S. Belkin, A. C. Vollmer, and R. A. LaRossa. 1995. Responses to toxicants of an Escherichia coli strain carrying a uspA':: lux genetic fusion and an E. coli strain carrying a grpE'::lux fusion are similar. Appl. Environ. Microbiol. 61: 4124-4127
  27. Vollmer, A. C., S. Belkin, D. R. Smulski, T. K. Van Dyk, and R. A. LaRossa. 1997. Detection of DNA damage by use of Escherichia coli carrying recA':: lux, uvr A':: lux, or alkA':: lux reporter plasmids. Appl. Environ. Microbiol. 63: 2566-2571
  28. Warth, A. D. 1989. Relationships between the resistance of yeasts to acetic, propanoic and benzoic acids and to methyl paraben and pH. Int. J. Food Microbiol. 8: 343-349 https://doi.org/10.1016/0168-1605(89)90005-6
  29. Warth, A. D. 1991. Effect of benzoic acid on glycolytic metabolite levels and intracellular pH in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 57: 3415-3417
  30. Warth, A. D. 1991. Mechanism of action of benzoic acid on Zygosaccharomyces bailii: Effects on glycolytic metabolite levels, energy production, and intracellular pH. Appl. Environ. Microbiol. 57: 3410-3414
  31. Yan, J. X., A. T. Devenish, R. Wait, T. Stone, S. Lewis, and S. Fowler. 2002. Fluorescence two-dimensional difference gel electrophoresis and mass spectrometry based proteomic analysis of Escherichia coli. Proteomics 2: 1682-1698 https://doi.org/10.1002/1615-9861(200212)2:12<1682::AID-PROT1682>3.0.CO;2-Y
  32. Zeng, L. and S. Jin. 2003. aph(3')-IIb, a gene encoding an aminoglycoside-modifying enzyme, is under the positive control of surrogate regulator HpaA. Antimicrob. Agents Chemother. 47: 3867 -3876 https://doi.org/10.1128/AAC.47.12.3867-3876.2003
  33. Zhao, X. Q., K. R. Kim, L. W. Sang, S. H. Kang, Y. Y. Yang, and J. W. Suh. 2005. Genetic organization of a 50-kb gene cluster isolated from Streptomyces kanamyceticus for kanamycin biosynthesis and characterization of kanamycin acetyltransferase. J. Microbiol. Biotechnol. 15: 346-353