• 제목/요약/키워드: uncertainty-propagation

검색결과 153건 처리시간 0.027초

수문·기상레이더기반 정량적 강우량 추정과정에서의 불확실성 분석 (Uncertainty analysis of quantitative rainfall estimation process based on hydrological and meteorological radars)

  • 이재경
    • 한국수자원학회논문집
    • /
    • 제51권5호
    • /
    • pp.439-449
    • /
    • 2018
  • 수문 기상레이더는 강우량을 바로 추정하지 못하고 여러 단계의 정량적 강우량 추정과정을 거치게 되므로 많은 불확실성 발생요소가 존재한다. 불확실성 관련한 기존 연구들은 정량적 레이더기반 강우량 추정과정에서 보정방법을 이용하여 각 단계별 불확실성을 줄이는 연구들을 수행하였다. 하지만 기존 연구들은 전체 과정에 대한 포괄적인 불확실성을 나타내지 못하고 각 단계별 불확실성의 상대적인 비율도 제시하지 못하는 단점이 있다. 본 연구에서는 정량적 레이더강우량 추정과정의 각 단계별 불확실성을 정량화하고 불확실성 전파를 나타낼 수 있는 적합한 방법을 제시하였다. 첫 번째로 초기와 최종 불확실성, 각 단계별 불확실성의 변동과 상대적인 비율을 나타낼 수 있는 새로운 개념을 제안하였다. 두 번째로 레이더기반 추정과정의 불확실성 정량화와 전파과정을 분석하기 위해 Maximum Entropy Method (MEM)와 Uncertainty Delta Method (UMD)를 적용하였다. 세 번째로 레이더기반 강우량 추정과정의 불확실성 정량화를 위해 2개 품질관리 알고리즘, 2개 강우량 추정방법, 2개 후처리 강우량 보정방법을 2012년 여름철 18개 사례에 대하여 사용하였다. 적용결과, MEM에서 최종 불확실성(후처리 강우량 보정 불확실성: ME = 3.81)이 초기 불확실성(품질관리 불확실성: ME = 4.28)보다 작게 나타났으며, UMD에서도 최종 불확실성(UMD = 4.75)이 초기 불확실성(UMD = 5.33)보다 작게 나타나 불확실성이 감소하는 것으로 나타났다. 하지만 레이더강우량 추정단계의 불확실성은 증가하는 것으로 나타났다. 또한 레이더강우량 추정과정에서 각 단계별로 적합한 방법을 선정하는 것이 각 단계별로 불확실성이 감소시킬 수 있음을 확인하였다. 따라서 본 연구는 새로운 방법이 명확히 불확실성을 정량화할 수 있으며 정확한 정량적 레이더 강우추정에 기여할 것으로 판단한다.

A SPATIAL PREDICTION THEORY FOR LONG-TERM FADING IN MOBILE RADIO COMMUNICATIONS

  • Yoo, Seong-Mo
    • ETRI Journal
    • /
    • 제15권3_4호
    • /
    • pp.27-34
    • /
    • 1994
  • There have been traditional approaches to model radio propagation path loss mechanism both theoretically ad empirically. Theoretical approach is simple to explain and effective in certain cases. Empirical approach accommodates the terrain configuration and distance between base station and mobile unit along the propagation path only. In other words, it does not accommodate natural terrain configuration over a specific area. In this paper, we propose a spatial prediction technique for the mobile radio propagation path loss accommodating complete natural terrain configuration over a specific area. Statistical uncertainty analysis is also considered.

  • PDF

A Study on the Propagation of Measurement Uncertainties into the Result on a Turbine Performance Test

  • Cho, Soo-Yong;Park, Chanwoo
    • Journal of Mechanical Science and Technology
    • /
    • 제18권4호
    • /
    • pp.689-698
    • /
    • 2004
  • Uncertainties generated from the individual measured variables have an influence on the uncertainty of the experimental result through a data reduction equation. In this study, a performance test of a single stage axial type turbine is conducted, and total-to-total efficiencies are measured at the various off-design points In the low pressure and cold state. Based on an experimental apparatus, a data reduction equation for turbine efficiency is formulated and six measured variables are selected. Codes are written to calculate the efficiency, the uncertainty of the efficiency, and the sensitivity of the efficiency uncertainty by each of the measured quantities. The influence of each measured variable on the experimental result is figured out. Results show that the largest uncertainty magnification factor (UMF) value is obtained by the inlet total pressure among the six measured variables, and its value is always greater than one. The UMF values of the inlet total temperature, the torque, and the RPM are always one. The uncertainty percentage contribution (UPC) of the RPM shows th, lowest influence on the uncertainty of the turbine efficiency, but the UPC of the torque has the largest influence to the result among the measured variables. These results are applied to find the correct direction for meeting an uncertainty requirement of the experimental result in the planning or development Phase of experiment, and also to offer ideas for preparing a measurement system in the planning phase.

Realistic estimation framework of radioactive release distributions into the environment during nuclear power plant accidents

  • Wasin Vechgama;Jaehyun Cho
    • Nuclear Engineering and Technology
    • /
    • 제56권8호
    • /
    • pp.3097-3111
    • /
    • 2024
  • Since the level 2 PSA of OPR-1000 was the requirement for regulatory purposes, Cs-137 release estimation was contained as the Nuclear Safety Act of ROK in which the Cs-137 release frequency exceeding 100 TBq was determined to happen less than 1.0E-6 per year after the Fukushima Daiichi Accident. However, Cs-137 release estimation from the conventional level 2 PSA of OPR-1000 provided uncertainty due to dominant accident sequence consideration. Thus, this study aimed to develop systematic methods through the overall framework to quantify realistic uncertainty concerns of radioactive material release using sensitivity and uncertainty analysis methods and apply them to OPR-1000. This framework helped to quantify confidential value for the Cs-137 release under the BEPU approach using both parametric and non-parametric methods to cover both realistic and conservative points. Uncertainty propagation analysis showed the unexpected uncertainty increase of Cs-137 release exceeding 100 TBq. The non-parametric uncertainty analysis provided higher conservative concerns for safety than the realistic concerns in terms of economics when compared with the parametric uncertainty analysis. Wilks' uncertainty analysis showed the importance to consider conservative Cs-137 release in order to reach the higher safety need. Sensitivity analysis showed reasonable relationships between engineering safety parameters with the Cs-137 release.

A polynomial chaos method to the analysis of the dynamic behavior of spur gear system

  • Guerine, A.;El Hami, A.;Fakhfakh, T.;Haddar, M.
    • Structural Engineering and Mechanics
    • /
    • 제53권4호
    • /
    • pp.819-831
    • /
    • 2015
  • In this paper, we propose a new method for taking into account uncertainties based on the projection on polynomial chaos. The new approach is used to determine the dynamic response of a spur gear system with uncertainty associated to gear system parameters and this uncertainty must be considered in the analysis of the dynamic behavior of this system. The simulation results are obtained by the polynomial chaos approach for dynamic analysis under uncertainty. The proposed method is an efficient probabilistic tool for uncertainty propagation. It was found to be an interesting alternative to the parametric studies. The polynomial chaos results are compared with Monte Carlo simulations.

기름 유량표준장치의 개발 및 측정 불확도에 관한 연구 (A Study on the Development and the Uncertainty Analysis of Oil Flow Standard System)

  • 임기원;최종오
    • 대한기계학회논문집B
    • /
    • 제27권8호
    • /
    • pp.1071-1080
    • /
    • 2003
  • A national standard system was developed in order to calibrate and test the oil flowmeters for the petroleum field. A stop valve and a gyroscopic weighing scale were employed for the primary standard of the flow quantity. It is operated by the standing start and finish mode and the static weighing method. The model equation for uncertainty evaluation was based on the calibration principle of standard system. The sources of the uncertainties were quantified and combined according to the GUM(Guide to the Expression of Uncertainty in Measurement). It was found that the standard system had the relative expanded uncertainty of 0.04 % in the range of 18 - 350 ㎥/h. According to the uncertainty budget, the uncertainties of the fluid density and the volume of pipeline, which were temperature dependent, contributed 92% of final uncertainty in the oil flow standard system.

A Formal Guidance for Handling Different Uncertainty Sources Employed in the Level 2 PSA

  • Ahn Kwang-Il;Yang Joon-Eon;Ha Jae-Joo
    • Nuclear Engineering and Technology
    • /
    • 제36권1호
    • /
    • pp.83-103
    • /
    • 2004
  • The methodological framework of the Level 2 PSA appears to be currently standardized in a formalized fashion, but there have been different opinions on the way the sources of uncertainty are characterized and treated. This is primarily because the Level 2 PSA deals with complex phenomenological processes that are deterministic in nature rather than random processes, and there are no probabilistic models characterizing them clearly. As a result, the probabilistic quantification of the Level 2 PSA CET / APET is often subjected to two sources of uncertainty: (a) incomplete modeling of accident pathways or different predictions for the behavior of phenomenological events and (b) expert-to-expert variation in estimating the occurrence probability of phenomenological events. While a clear definition of the two sources of uncertainty involved in the Level 2 PSA makes it possible to treat an uncertainty in a consistent manner, careless application of these different sources of uncertainty may produce different conclusions in the decision-making process. The primary purpose of this paper is to characterize typical sources of uncertainty that would often be addressed in the Level 2 PSA and to provide a formal guidance for quantifying their impacts on the PSA Level 2 risk results. An additional purpose of this paper is to give a formal approach on how to combine random uncertainties addressed in the Level 1 PSA with subjectivistic uncertainties addressed in the Level 2 PSA.

An Integrated Design Process for Manufacturing and Multidisciplinary Design Under System Uncertainty

  • Byeng Dong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제5권4호
    • /
    • pp.61-68
    • /
    • 2004
  • Necessity to address engineering system uncertainties in design processes has long been acknowledged. To obtain quality of product, a safety factor is traditionally used by many design engineers due to its easy of use and comprehension. However, the safety factor approach often yields either conservative or unreliable designs, since it ignores the type of probability distribution and the mechanism of uncertainty propagation from the input to the output. For a consistent reliability-based design, two fundamental issues must be investigated thoroughly. First, the design-decision process that clearly identifies a mechanism of uncertainty propagation under system uncertainties needs to be developed, which must be an efficient and accurate process. To identify the mechanism more effectively, an adaptive probability analysis is proposed by adaptively setting probability levels through a posteriori error estimation. The second is to develop the design process that not only yields a high quality design but also a cost-effective optimum design from manufacturing point of view. As a result, a response surface methodology is specially developed for RBDO, thus enhancing numerical challenges of efficiency and complicatedness. Side crashworthiness application is used to demonstrate the integrated design process for product and manufacturing process design.

AZ31 마그네슘합금의 피로균열진전수명에 적합한 확률분포 평가 (Estimation of Probability Distribution Fit for Fatigue Crack Propagation Life of AZ31 Magnesium Alloy)

  • 최선순
    • 대한기계학회논문집A
    • /
    • 제33권8호
    • /
    • pp.707-719
    • /
    • 2009
  • The variables relating to the fatigue behavior have uncertainty and are random. The fatigue crack propagation is, thus, stochastic in nature. In this study, fatigue experiments are performed on the specimen of the magnesium alloy AZ31. The data of the fatigue life are scattered even in the same experimental condition. It is necessary to determine the probability distribution of the fatigue crack propagation life for the reliability analysis as well as the design and maintenance of structural components. Therefore the statistics and the probability distribution for the fatigue crack propagation life are investigated and the best fit probability distribution of that is proposed in this paper.

확률론적 하중에 따른 실트질 모래지반 내 지중응력의 변동계수 특성 (The Coefficients of Variation Characteristic of Stress Distribution in Silty Sand by Probabilistic Load)

  • 봉태호;손영환;김성필;허준
    • 한국농공학회논문집
    • /
    • 제54권6호
    • /
    • pp.77-87
    • /
    • 2012
  • Recently, Load and Resistance Factor Design (LRFD) based on reliability analysis has become a global trend for economical and rational design. In order to implement the LRFD, quantification of uncertainty for load and resistance should be done. The reliability of result relies on input variable, and therefore, it is important to obtain exact uncertainty properties of load and resistance. Since soil stress is the main reason causing the settlement or deformation of ground and load on the underground structure, it is essential to clarify the uncertainty of soil stress distribution for accurately predict the uncertainty of load in LRFD. In this study, laboratory model test on silty sand bed under probabilistic load is performed to observe propagation of upper load uncertainty. The results show that the coefficient of variation (COV) of soil stress are varied depending on location due to non-linear relationship between upper load increment and soil pressure increment. In addition, when the load uncertainty is transmitted through ground, COV is decreased by damping effect.