• Title/Summary/Keyword: uncertainty observer

Search Result 132, Processing Time 0.028 seconds

On the Robustness of Disturbance Observer based Controller for DC Motor with Unstructured Uncertainty (비구조적 불확실성이 존재하는 DC모터에 대한 외란관측기 기반 제어기의 강인성에 대한 연구)

  • Jo, Nam-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.66-71
    • /
    • 2017
  • In this paper, we study the robustness of disturbance observer based controller for DC motor in the presence of unmodeled dynamics. It is well known that the robustness property usually becomes weaker as the control gain becomes larger. On the contrary to this expectation, it is shown that the phase margin of DOB controller remains quite a large value even though the time constant of Q-filter becomes smaller. The computer simulation results show that DOB controller is able to stabilize the motor system even in the presence of unmodeled dynamics. On the contrary, the unity-feedback system fails to maintain stability when a high gain feedback is employed for the purpose of achieving better disturbance attenuation performance.

Adaptive Anti-Sway Trajectory Tracking Control of Overhead Crane using Fuzzy Observer and Fuzzy Variable Structure Control (퍼지 관측기와 퍼지 가변구조제어를 이용한 천정주행 크레인의 적응형 흔들림 억제 궤적추종제어)

  • Park, Mun-Soo;Chwa, Dong-Kyoung;Hong, Suk-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.452-461
    • /
    • 2007
  • Adaptive anti-sway and trajectory tracking control of overhead crane is presented, which utilizes Fuzzy Uncertainty Observer(FUO) and Fuzzy based Variable Structure Control(FVSC). We consider an overhead crane system which can be decoupled into the actuated and unactuated subsystems with its own lumped uncertainty such as parameter uncertainties and external disturbance. First, a new method for anti-sway control using FVSC is proposed to improve the conventional method based on Lyapunov direct method, while a conventional trajectory tracking control law using feedback linearization is directly adopted. Second, FUO is designed to estimate one of the two lumped uncertainties which can compensate both of them, based on the fact that two lumped uncertainties are coupled with each other. Then, an adaptive anti-sway control is proposed by incorporating the proposed FVSC and FUO. Under the condition that the observation error is Uniformly Ultimately Bounded(UUB) within an arbitrarily shrinkable region, the overall closed-loop system is shown to be Globally Uniformly Ultimately Bounded(GUUB). In addition, the Global Asymptotic Stability(GAS) of it is shown under the vanishing disturbance assumption. Finally, the effectiveness of the proposed scheme has been confirmed by numerical simulations.

Hybrid fault detection and isolation for uncertainty system (불확실성을 고려한 시스템에서의 복합형 이상검출 및 격리)

  • 유호준;김대우;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1432-1435
    • /
    • 1997
  • This paper proposes a fault detection and isolation metho by combining the parameter estimation method[4] with the observer method[2] to use merits of both methods. To verify the performance of the method proposed some simulations applied to remotely piloted vehicle are performed.

  • PDF

Robust stability of a two-degree-of-freedom servosystem incorporating an observer with multiplicative uncertainty (관측기를 갖는 2자유도 서보계의 승법적인 불확실성에 대한 강인한 안정성)

  • Kim, Young-Bok;Yang, Joo-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 1997
  • In order to reject the steady-state tracking error, it is common to introduce integral compensators in servosystems for constant reference signals. However, if the mathematical model of the plant is exact and no disturbance input exists, the integral compensation is not necessary. From this point of view, a two-degree-of-freedom(2DOF) servosystem has been proposed, in which the integral compensation is effective only when there is a modeling error or a disturbance input. The present paper considers robust stability of this 2DOF servosystem incorporating an observer to the structured and unstructured uncertainties of the controlled plant. A robust stability condition is obtained using Riccati inequality, which is written in a linear matrix inequality (LMI) and independent of the gain of the integral compensator. This result impies that if the plant uncertainty is in the allowable set defined by the LMI condition, a high-gain integral compensation can be carried preserving robust stability to accelerate the tracking response.

  • PDF

Nonlinear Friction Control Using the Robust Friction State Observer and Recurrent Fuzzy Neural Network Estimator (강인한 마찰 상태 관측기와 순환형 퍼지신경망 관측기를 이용한 비선형 마찰제어)

  • Han, Seong-Ik
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.90-102
    • /
    • 2009
  • In this paper, a tracking control problem for a mechanical servo system with nonlinear dynamic friction is treated. The nonlinear friction model contains directly immeasurable friction state and the uncertainty caused by incomplete modeling and variations of its parameter. In order to provide the efficient solution to these control problems, we propose a hybrid control scheme, which consists of a robust friction state observer, a RFNN estimator and an approximation error estimator with sliding mode control. A sliding mode controller and a robust friction state observer is firstly designed to estimate the unknown infernal state of the LuGre friction model. Next, a RFNN estimator is introduced to approximate the unknown lumped friction uncertainty. Finally, an adaptive approximation error estimator is designed to compensate the approximation error of the RFNN estimator. Some simulations and experiments on the mechanical servo system composed of ball-screw and DC servo motor are presented. Results demonstrate the remarkable performance of the proposed control scheme.

Fault Detection by Using an Adaptive Observer

  • Inoue, A.;Deng, M.;Yoshinaga, S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.710-713
    • /
    • 2005
  • In this paper, a design method to detect faults in plants with uncertainties is proposed. When a plant has faults, the plant will be corrupted by an unknown fault signal. In addition, the plant also includes uncertainties, such as disturbances and plant parameter deviations. In this case, the proposed method estimates the fault signal by using an adaptive observer. Numerical examples are given to demonstrate the validity of the proposed method.

  • PDF

An Enhanced Time Delay Observer for Nonlinear Systems

  • Park, Suk-Ho;Chang, Pyung-Hun
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.149-156
    • /
    • 2000
  • Time delay observer (TDO), thanks to the time delay control (TDC) concept, requires little knowledge of a plant model, and hence is easy to design, robust to parameter variation and computationally efficient, yet can reconstruct states rather reliable for nonlinear plant. In this paper, we propose an improved version of TDO that solves two problems inherent in TDO as follows: TDO displays large reconstruction errors due to low-frequency uncertainty and has some restrictions on selecting its gains. By introducing a low pass filter and a state associated with it, we obtain an enhanced time delay observer (ETDO). This observer turns out to have smaller reconstruction errors than those of TDO and not to have any restriction on selecting its gains, thereby solving the problems. Through performance comparison by transfer function and simulation, we validate the analysis results of two observers (TDO and ETDO) and evaluate the performances. Finally, through experiments on BLDC motor system, the analysis results are clearly conformed.

  • PDF

Sliding Mode Control of the Vehicle ABS with a Disturbance Observer for Model Uncertainties (모델 불확실성에 대한 외란 관측기를 가진 차량 ABS의 슬라이딩 모드 제어)

  • Hwang Jin-Kwon;Song Chul-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.44-51
    • /
    • 2006
  • This paper addresses sliding mode control of the anti-lock braking system (ABS) with a disturbance observer for model uncertainties such as vehicle parameter variation, un-modeled dynamics, and external disturbances. By using a nominal vehicle model, a sliding mode controller is designed to achieve a desired wheel slip ratio for ABS control. To compensate the model uncertainties, a disturbance observer is introduced with the help of a transfer function of a hydraulic brake dynamics. A proposed sliding mode controller with a disturbance observer is evaluated through simulations for model uncertainties. The simulation results show that the disturbance observer can enhance performances of sliding mode control for ABS.

Takagi-Sugeno Fuzzy Model-Based Approach to Robust Control of Boost DC-DC Converters

  • Seo, Sang-Wha;Choi, Han Ho;Kim, Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.925-934
    • /
    • 2015
  • This paper considers the robust controller design problem for a boost DC-DC converter. Based on the Takagi-Sugeno fuzzy model-based approach, a fuzzy controller as well as a fuzzy load conductance observer are designed. Sufficient conditions for the existence of the controller and the observer are derived using Linear Matrix Inequalities (LMIs). LMI parameterizations of the gain matrices are obtained. Additionally, LMI conditions for the existence of the fuzzy controller and the fuzzy load observer guaranteeing α-stability, quadratic performance are derived. The exponential stability of the augmented fuzzy observer-controller system is shown. It is also shown that the fuzzy load observer and the fuzzy controller can be designed independently. Finally, the effectiveness of the proposed method is verified via experimental and simulation results under various conditions.

Control Performance Improvement Using Overshoot Detecting Logic and Feedforward Disturbance Observer (오버슈트 탐지 로직 및 피드포워드 외란관측기를 활용한 제어 성능 개선 연구)

  • Lee, Hanbit;Lim, Seunghan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.6
    • /
    • pp.431-441
    • /
    • 2020
  • In this paper, we propose a new method using a feedforward disturbance observer that guarantees stability and robustness about the effects of external disturbance and model uncertainty. The method is consist of a disturbance observer, a feedforward controller, and an overshoot detecting logic. It has an advantage of reducing the excessive overshoot by external disturbance and model uncertainty. Also, it is easy to adjust the control gain due to a simple structure. In order to verify the effectiveness of a new method, simulation results are given for longitudinal model of F-16 aircraft. By reflecting a various of model uncertainties, the stability and the robustness are guaranteed. Finally, the stability and the robustness of the proposed method are verified using root locus plot and bode plot.