• Title/Summary/Keyword: uncertainty factor

Search Result 631, Processing Time 0.027 seconds

A Study on Determining Factors for Manufacturers to Distributors Warehouse in Supply Chain (제조업체의 유통업체 물류창고 활용 결정 요인에 관한 연구)

  • Lee, Sang-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.4 no.2
    • /
    • pp.15-20
    • /
    • 2013
  • This study aims to determine factors related for manufacturers to use distributors storehouse and its cost efficiency in Supply Chain. When manufacturers which have relationships with Big distributors determine the way of their logistics, they can use their own warehouse, or the distributors', or outsource its function. In which case the manufacturers face the cost efficiency of using warehouse will be different, therefore, the driven factors will exist internally or externally. The findings of this study are that internal factors(brand value, product portfolio, and technological capabilities), external factors(technological characteristics, demands fluctuations, and munificence), and transaction characteristics(transaction experiences, dependency) would be driven factor between manufacturer and distributors in supply chain. These driven factors effects manufacturers transactions power on their distributors.

Plans for Reducing Risk through a Case Study of Risk Factors at a Construction Site -Focused on Earth work, Foundation Work, Reinforced Concrete Construction- (건설현장의 위험요소 사례연구를 통한 위험저감 방안의 고찰 -토공사, 기초공사, 철근콘크리트공사를 대상으로-)

  • Kim, Jin-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.4
    • /
    • pp.83-93
    • /
    • 2010
  • With construction projects continuously becoming more massive and complex, risk factors have been consistently increasing. To achieve a successful project, it is very important to identify and cope with such risk factors. Therefore, the purpose of this study is to suggest plans of reducing risk, not only for describing the drafting process for construction planning but also for systematically organizing constraints and risk factors in earth work, foundation work and reinforced concrete construction. To achieve these objectives, this study 1) analyzes previous theories about risk classification structure, 2) performs a case study of an actual project to embody the problems of safety management by analyzing the results of an interview with a construction engineer. In conclusion, the following factors were systematically organized: 1) characteristics of construction site (purpose, structure, floor, etc.); 2) the actual application conditions of the main construction methods; 3) the relationship between constraints and risk factors.

Evaluation of Critical Pressure Ratios Sonic Nozzle at Low Reynolds Numbers (음속 노즐의 임계 압력비에 대한 저 레이놀즈수의 영향)

  • Choe, Yong-Mun;Park, Gyeong-Am;Cha, Ji-Seon;Choe, Hae-Man;Yun, Bok-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1535-1539
    • /
    • 2000
  • A sonic nozzle is used as a reference flow meter in the area of gas flow rate measurement. The critical pressure ratio of sonic nozzle is an important factor in maintaining its operating condition. ISO9300 suggested the critical pressure ratio of sonic nozzle as a function of area ratio. In this study, 13 sonic nozzles were made by the design of ISC9300 with different half diffuser angles of 2。 to 8。 and throat diameters of 0.28 to 4.48 mm. The test results of half diffuser angles below 8。 ar quite similar to those of ISO9300. On the other hand, the critical pressure ratio for the nozzle of 8。 decreases by 5.5% in comparison with ISO9300. However, ISO9300 does not predict the critical pressure ratio at lower Reynolds numbers than 10(sup)5. Therefore, it is found that it is a better way for the flow of low Reynolds number to express the critical pressure ratio of sonic nozzle as a function of Reynolds number than area ratios. A correlation equation of critical pressure is introduced with uncertainty $\pm$3.2 % at 95% confidence level.

Determination of Critical Slope Height for Large Open-pit Coal Mine and Analysis of Displacement for Slope failure Prediction (대규모 노천 석탄광산의 한계사면높이 결정과 사면파괴 예측을 위한 계측자료 해석)

  • Jung, Yong-Bok;SunWoo, Choon;Lee, Jong-Beom
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.447-456
    • /
    • 2008
  • Open-pit mine slope design must be carried out from the economical efficiency and stability point of view. The overall slope angle is the primary design variable because of limited support or reinforce options available. In this study, the slope angle and critical slope height of large coal mine located in Pasir, Kalimantan, Indonesia were determined from safety point of view. Failure time prediction based on the monitored displacement using inverse velocity was also conducted to make up fir the uncertainty of the slope design. From the study, critical slope height was calculated as $353{\sim}438m$ under safety factor guideline (SF>1.5) and $30^{\circ}$ overall slope angle but loom is recommended as a critical slope height considering the results of sensitivity analysis of strength parameters. The results of inverse velocity analysis also showed good agreement with field slope cases. Therefore, failure of unstable slope can be roughly detected before real slope failure.

Bayesian Analysis for Uncertainty of Radiocarbon Dating (방사성탄소연대측정법의 불확실성에 대한 베이지안 분석)

  • Lee, Youngseon;Lee, Jaeyong;Kim, Jangsuk
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.3
    • /
    • pp.371-383
    • /
    • 2015
  • Use of radiocarbon dating is increasing for chronology; however, its variability and discrepancy with existing chronologies can cause doubts in regards to credibility. In this paper, we explore factors that influence radiocarbon dating variabilities. We obtained estimated radiocarbon ages by sending identical samples to several labs multiple times. A Bayesian method was used to analyze the obtained data. From the analysis, we conclude that some factors (such as type of labs and megasamples) can induce variability when estimating radiocarbon age. We identify the size of variability caused by each factor and analyze the estimated variability in each lab corresponds with the reported variability.

Study on Determination of Permissible Soil Concentrations for Explosives and Heavy Metals (화약류 및 중금속의 인체위해성평가 및 생태독성에 기반한 토양허용농도도출에 관한 연구)

  • Kim, Moonkyung;Jung, Jae-Woong;Nam, Kyoungphile;Jeong, Seulki
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.19-27
    • /
    • 2015
  • Permissible soil concentrations for explosives (i.e., TNT and RDX) and heavy metals (i.e., Cu, Zn, Pb, and As) heve been derived from human risk and ecotoxicity, respectively. For TNT and RDX, human risk based-permissible soil concentrations were determined as 460 mg-TNT/kg-soil and 260 mg-RDX/kg-soil. Ecotoxicity based-permissible soil concentrations for Cu and Zn were determined from species sensitivity distribution (SSD) and uncertainty factor of 1 to 5, yielding 18.0-40.0 mg-Cu/kg-soil and 46.0-100 mg-Zn/kg-soil. For Pb and As, ecotoxicity data were not enough to establish SSD so that a deterministic method was used, generating 13.8-30.8 mg-Pb/kg-soil and 2.10-4.60 mg-As/kg-soil. It is worth noting that the methodology used to derive permissible concentrations in soil can differ depending on ecotoxicity data availability and socio-economic situations, which results in different permissible concentrations. The permissible concentrations presented in this study have been derived from conservative assumptions for exposure parameters, and thus should be considered as soil standards. In the light of remediation and pollution management of a site of interest, the site-specific and receptor-specific permissible soil concentrations should be derived considering potential receptors, current and future land use, background concentrations, and socio-economic consultation.

The Performance of Large-diameter Bored Piles and Large-section Barrettes in Decomposed Geomaterials in Hong Kong

  • Ng Charles W.W.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.334-408
    • /
    • 2006
  • In Hong Kong, large-diameter (${\ge}600mm$) bored piles and large-section excavated rectangular barrettes are commonly used to support tall buildings to resist both vertical and horizontal loads. These piles and barrettes penetrate through and may found in saprolitic soils and decomposed rocks. Generally, the design of these large bored piles and barrettes involves considerable amount of uncertainty and design parameters must usually be verified by field tests. In this paper, over 50 full-scale load tests on large-diameter bored piles and over 15 large-section of rectangular barrettes in Hong Kong are reviewed and interpreted critically, in particular the degree of mobilisation of side shear resistance using a mobilization rating (MR) factor and a displacement index (DI) for floating bored piles and barrettes and rock-socketed piles, respectively. The author was heavily involved with many of these load tests. The diameter of the bored piles tested ranges from 0.6m to 1.8m and the depth varies from 12m to 75m. Sizes of barrettes critically reviewed include $2.2m{\times}0.6m,\;2.2m{\times}0.8m,\;2.8m{\times}0.8m\;and\;2.8m{\times}1.0m$ (on plan) and the depth varies from 36m and 63m. Based on these field tests, a new failure load criterion for large-diameter bored piles and barrettes is developed and proposed. The side shear resistance of the bored piles and barrettes is quantitatively analyzed with respect to local displacements, standard penetration tests, unconfined compressive strength (UCS) for rock sockets and using the effective stress principle. In addition, the effects of construction including post-grouting, construction time, side scraping and excavation tools on side shear resistance are investigated and reported.

  • PDF

Organic Philosophy Background of Biomorphic Architecture (바이오모픽 건축의 유기체 철학 배경에 관한 연구)

  • Kim, Jung-Shin
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.5
    • /
    • pp.436-443
    • /
    • 2014
  • This study was begun on the premise that architecture which has the definite disposition for survival even in the urban, social structure of that uncertainty and constructs specialty is biomorphic architecture. This study was organic philosophy background analysis of Biomorphic architecture occurrence, through meaning inherent analysis in Biomorphic architecture, which going to be deployed atypical and new shape one. Biomorphic architecture is organism shape of structure of autonomous survival, which is shaped the potential of biological phenomena. Theoretical analysis of the Biomorhpic architecture characteristic was analysed. Factor in the occurrence of Biomorphic architecture based on an objective analysis of the research is characteristic analysis. Which is reason as the 'create', the science of complexity and emergent System. The generation causes of biomorphic architecture are an organic philosophy. Biomorphic architecture makes the realization of simile form using the procedural principle represented by in natural phenomena.

Development of a Dose Calibration Program Based on an Absorbed Dose-to-Water Standard (물 흡수선량 표준에 기반한 선량교정 프로그램 개발)

  • 신동오;김성훈;박성용;서원섭;이창건;최진호;전하정;안희경;강진오
    • Progress in Medical Physics
    • /
    • v.14 no.3
    • /
    • pp.175-183
    • /
    • 2003
  • Absorbed dose dosimetry protocols of high energy photon and electron beams, which are widely used and based on an air kerma (or exposure) calibration factors, have somewhat complex formalism and limitations for improving dosimetric accuracy due to the uncertainty of the physical parameters used. Recently, the IAEA and the AAPM published the absorbed dose to water-based dosimetry protocols(IAEA TRS-398 and AAPM TG-51). The dose calibration programs for these two protocols were developed. This program for high energy photon and electron beams was also developed for users to use in a window environment using the Visual C++ language. The formalism and physical parameters of these two protocols were strictly applied to the program. The tables and graphs of the physical data, and the information of ion chambers were numericalized for their incorporation into a database. This program can be useful in developing new dosimetry protocols in Korea.

  • PDF

Determination Process of Drift Capacity for Seismic Performance Evaluation of Steel Tall Buildings (초고층 철골 건축물의 내진성능평가를 위한 Drift Capacity 산정 프로세스)

  • Min, Ji Youn;Oh, Myoung Ho;Kim, Myeong Han;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.481-490
    • /
    • 2006
  • The actual performance of a building during an earthquake depends on many factors. The prediction of the seismic performance of a new or existing structure is complex, due not only to the large number of factors that need to be considered and the complexity of the seismic response, but also due to the large inherent uncertainties and randomness associated with making these predictions. A central issue of this research is the proper treatment and incorporation of these uncertainties and randomness in the evaluation of structural capacity and response has been adopted in the seismic performance evaluation of steel tall buildings to account for the uncertainties and randomness in seismic demand and capacities in a consistent manner. The basic framework for reliability-based seismic performance evaluation and the key factors for statistical studies were summarized. A total of 36 target structures that represent typical tall steel buildings based on national building code (KBC-2005) were designed for the statistical studies of demand factor s and capacity factors. The incremental dynamic analysis (IDA) approach was examined through the simple steel moment frame building in determination of global drift capacity.