• Title/Summary/Keyword: uncertain system properties

Search Result 59, Processing Time 0.02 seconds

Natural frequency of laminated composite plate resting on an elastic foundation with uncertain system properties

  • Lal, Achchhe;Singh, B.N.;Kumar, Rakesh
    • Structural Engineering and Mechanics
    • /
    • v.27 no.2
    • /
    • pp.199-222
    • /
    • 2007
  • Composite laminated structures supported on elastic foundations are being increasingly used in a great variety of engineering applications. Composites exhibit larger dispersion in their material properties compared to the conventional materials due to large number of parameters associated with their manufacturing and fabrication processes. And also the dispersion in elastic foundation stiffness parameter is inherent due to inaccurate modeling and determination of elastic foundation properties in practice. For a better modeling of the material properties and foundation, these are treated as random variables. This paper deals with effects of randomness in material properties and foundation stiffness parameters on the free vibration response of laminated composite plate resting on an elastic foundation. A $C^0$ finite element method has been used for arriving at an eigen value problem. Higher order shear deformation theory has been used to model the displacement field. A mean centered first order perturbation technique has been employed to handle randomness in system properties for obtaining the stochastic characteristic of frequency response. It is observed that small amount of variations in random material properties and foundation stiffness parameters significantly affect the free vibration response of the laminated composite plate. The results have been compared with those available in the literature and an independent Monte Carlo simulation.

Stochastic dynamic instability response of piezoelectric functionally graded beams supported by elastic foundation

  • Shegokara, Niranjan L.;Lal, Achchhe
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.4
    • /
    • pp.471-502
    • /
    • 2016
  • This paper presents the dynamic instability analysis of un-damped elastically supported piezoelectric functionally graded (FG) beams subjected to in-plane static and dynamic periodic thermomechanical loadings with uncertain system properties. The elastic foundation model is assumed as one parameter Pasternak foundation with Winkler cubic nonlinearity. The piezoelectric FG beam is subjected to non-uniform temperature distribution with temperature dependent material properties. The Young's modulus and Poison's ratio of ceramic, metal and piezoelectric, density of respective ceramic and metal, volume fraction exponent and foundation parameters are taken as uncertain system properties. The basic nonlinear formulation of the beam is based on higher order shear deformation theory (HSDT) with von-Karman strain kinematics. The governing deterministic static and dynamic random instability equation and regions is solved by Bolotin's approach with Newmark's time integration method combined with first order perturbation technique (FOPT). Typical numerical results in terms of the mean and standard deviation of dynamic instability analysis are presented to examine the effect of slenderness ratios, volume fraction exponents, foundation parameters, amplitude ratios, temperature increments and position of piezoelectric layers by changing the random system properties. The correctness of the present stochastic model is examined by comparing the results with direct Monte Caro simulation (MCS).

Compensation of the Uncertain Time Delays Using a Predictive Controller (예측제어기를 이용한 불확실한 시간지연 보상)

  • 허화라;이장명
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.13-16
    • /
    • 2002
  • In this paper, we newly propose a predictor model which is a method to overcome the time-varying delay in a system and we verify that the predictor model is well suited for the time-delayed system and improves the stability a lot through the experiments. The proposed predict compensator compensates uncertain time delays and minimizes variance of system performance. Therefore it is suitable for the control of uncertain systems and nonlinear systems that are difficult to be modeled. The simulation conditions are set for the cases of various input time delays and simulations are applied for the 2-axis robot arms which are drawing a circle on the plane. Conclusively, the proposed predict compensator represents stable properties regardless of the time delay. As a future research, we suggest to develope a robust control algorithm to compensate the random time delay which occurs in the tole-operated systems.

  • PDF

Probabilistic free vibration analysis of Goland wing

  • Kumar, Sandeep;Onkar, Amit Kumar;Manjuprasad, M.
    • International Journal of Aerospace System Engineering
    • /
    • v.6 no.2
    • /
    • pp.1-10
    • /
    • 2019
  • In this paper, the probabilistic free vibration analysis of a geometrically coupled cantilever wing with uncertain material properties is carried out using stochastic finite element (SFEM) based on first order perturbation technique. Here, both stiffness and damping of the system are considered as random parameters. The bending and torsional rigidities are assumed as spatially varying second order Gaussian random fields and represented by Karhunen Loeve (K-L) expansion. Here, the expected value, standard deviation, and probability distribution of random natural frequencies and damping ratios are computed. The results obtained from the present approach are also compared with Monte Carlo simulations (MCS). The results show that the uncertain bending rigidity has more influence on the damping ratio and frequency of modes 1 and 3 while uncertain torsional rigidity has more influence on the damping ratio and frequency of modes 2 and 3.

An Identification of the Hydraulic Motion Simulator Using Modified Signal Compression Method and Its Application

  • Park, Min-Kyu;Lee, Min-Cheol;Go, Seok-Jo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.133-136
    • /
    • 1999
  • Many researches on the identification of a system have been carried out using a least square method, an adaptive filter, and so on. However, it is difficult to apply these methods in a nonlinear system. In the case of a nonlinear system, it is known that the signal compression method is able to estimate uncertain parameters of linear element in a nonlinear system because it is able to separate linear element and nonlinear element in a nonlinear system. However, the signal compression method cannot be applied to a motion simulator because actuators of the simulator is single-rod cylinders which includes expansion and compression dynamic properties. Therefore, this paper proposes a modified signal compression method which is able to estimate uncertain parameters of the motion simulator dynamics. The dynamic properties of this system are identified by separating expansion and compression properties when applying the signal compression method. And then, the identified parameters are applied to design a sliding mode controller for the simulator. The performance of the designed sliding mode controller is evaluated experimentally.

  • PDF

A Robust Control with a Neural Network Structure for Uncertain Robot Manipulator

  • Han, Myoung-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.1916-1922
    • /
    • 2004
  • A robust position control with the bound function of neural network structure is proposed for uncertain robot manipulators. The uncertain factors come from imperfect knowledge of system parameters, payload change, friction, external disturbance, and etc. Therefore, uncertainties are often nonlinear and time-varying. The neural network structure presents the bound function and does not need the concave property of the bound function. The robust approach is to solve this problem as uncertainties are included in a model and the controller can achieve the desired properties in spite of the imperfect modeling. Simulation is performed to validate this law for four-axis SCARA type robot manipulator.

Identification of Interval Model for Parametric Uncertain Systems (파라미터 불확실성 시스템의 구간모델 식별)

  • 김동형;우영태;김영철
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.8
    • /
    • pp.462-470
    • /
    • 2003
  • This paper presents an algorithm of identifying parametric uncertainty by way of an interval model. For a given set of frequency response data from an uncertain linear SISO system of which the upper and the lower bounds of both magnitude and phase responses are represented, the proposed algorithm consists of two main parts: first, the nominal model is identified by using Least Square Estimation (LSE), and then an interval model is constructed by expanding the extremal properties of interval systems, so that tightly enclose the given envelopes within those of interval model. Two numerical examples are given to demonstrate and verify the developed algorithm. The identified interval model can be used for evaluating the worst case performance and stability margins against parametric uncertainty by using some extremal properties on interval systems.

Performance Uncertainty Estimation of a Nonlinear Vibration System Based on a Sampling Method (샘플 추출방법에 근거한 비선형 진동계의 성능 불확실성 예측)

  • Choi, Chan-Kyu;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.113-118
    • /
    • 2009
  • A designer regards the vibration system as a linear system. However, in real world, nonlinearity of a vibration system should exist caused by various factors like manufacturing conditions or uncertain material properties. So, properties of a spring and a damper which are consisting the vibration system have statistical distribution. Therefore, a designer needs to analyze the statistical nonlinearity in a vibration system. In this paper, $1^{st}$ Taylor series expansion method and univariate dimension reduction method apply to a performance measure of nonlinear vibration system, and compare each result. And then, merits and demerits of each method are discussed. For apply more actual problem, a performance measure population is estimated based on design variable samples like properties of spring or damper.

  • PDF

Direct Adaptive Fuzzy Sliding Mode Control for Under-actuated Uncertain Systems

  • Su, Shun-Feng;Hsueh, Yao-Chu;Tseng, Cio-Ping;Chen, Song-Shyong;Lin, Yu-San
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.240-250
    • /
    • 2015
  • The development of the control algorithms for under-actuated systems is important. Decoupled sliding mode control has been successfully employed to control under-actuated systems in a decoupling manner with the use of sliding mode control. However, in such a control scheme, the system functions must be known. If there are uncertainties in those functions, the control performance may not be satisfactory.In this paper, the direct adaptive fuzzy sliding mode control is employed to control a class of under-actuated uncertain systems which can be regarded as a combination of several subsystems with one same control input. By using the hierarchical sliding control approach, a sliding control law is derived so as to make every subsystem stabilized at the same time. But, since the system considered is assumed to be uncertain, the sliding control law cannot be readily facilitated. Therefore, in the study, based on Lyapunov stable theory a fuzzy compensator is proposed to approximate the uncertain part of the sliding control law. From those simulations, it can be concluded that the proposed compensator can indeed cope with system uncertainties. Besides, it can be found that the proposed compensator also provide good robustness properties.

Power system stabilizer using VSS-MFAC

  • Lee, Sang-Seung;Park, Jong-Keun;Lee, Ju-Jang
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.227-230
    • /
    • 1990
  • In this paper we present a variable structure systeme-model following adaptive control (VSS-MFAC) method for an uncertain turbo-generator system which is apt to suffer from the unmodeled parameter uncertainties and the external disturbances. The simulation results for the power system stabilizer(PSS) exhibit robust adaptive model-following properties well in the PSS designed by the proposed VSS-MFAC methodology when a step change in the mechanical torque and a parameter variation is applied.

  • PDF