• Title/Summary/Keyword: uncertain

Search Result 2,798, Processing Time 0.022 seconds

A dynamical stochastic finite element method based on the moment equation approach for the analysis of linear and nonlinear uncertain structures

  • Falsone, Giovanni;Ferro, Gabriele
    • Structural Engineering and Mechanics
    • /
    • v.23 no.6
    • /
    • pp.599-613
    • /
    • 2006
  • A method for the dynamical analysis of FE discretized uncertain linear and nonlinear structures is presented. This method is based on the moment equation approach, for which the differential equations governing the response first and second-order statistical moments must be solved. It is shown that they require the cross-moments between the response and the random variables characterizing the structural uncertainties, whose governing equations determine an infinite hierarchy. As a consequence, a closure scheme must be applied even if the structure is linear. In this sense the proposed approach is approximated even for the linear system. For nonlinear systems the closure schemes are also necessary in order to treat the nonlinearities. The complete set of equations obtained by this procedure is shown to be linear if the structure is linear. The application of this procedure to some simple examples has shown its high level of accuracy, if compared with other classical approaches, such as the perturbation method, even for low levels of closures.

Robust $H_{\infty}$ State Feed back Congestion Contro1 of ATM for lineardiscrete-time systems with Uncertain Time-Variant Delav (시간지연을 고려한 ATM 망에서의 체증제어를 위한 $H_{\infty}$ 제어기 설계)

  • Kang, Lae-Chung;Jung, Woo-Chae;Kim, Young-Joong;Lim, Myo-Taeg
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2161-2163
    • /
    • 2004
  • This paper focuses on congestion control for ATM network with uncertain time-variant delays. The time-variant delays can be distinguished into two distinct components. The first one that is represented by time-variant queueing delays in the intermediate switches is occurred in the return paths of RM cells. The next one is a forward path delay. It is solved by the VBR Model which quantifies the data propagation from the sources to the switch. Robust $H_{\infty}$ control is studied for solving congestion problem with norm-bounded time-varying uncertain parameters. The suitable robust $H_{\infty}$ controller is obtained from the solution of a convex optimization problem including terms of LMIs.

  • PDF

A MIMO VSS with an Integral-Augmented Sliding Surface for Uncertain Multivariable Systems (불확실 다변수 시스템을 위한 적분 슬라이딩 면을 갖는 다입출력 가변 구조 제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.950-960
    • /
    • 2010
  • In this paper, a multi-input multi-output(MIMO) integral variable structure system with an integral-augmented sliding surface is designed for the improved robust control of uncertain multivariable system under the matched persistent disturbance. To effectively remove the reaching phase problems, the integral augmented sliding surface is proposed. Then for its design, the eigenstructure assignment technique is introduced to. To guarantee the designed performance against the persistent disturbance, the stabilizing control for multi-input system is also designed to generate the sliding mode on the integral sliding surface. The stability of the global system together with the existence condition of the sliding mode are investigated and proved for the case of multi input system in the presence of uncertainty and disturbance. The reaching phase is completely removed in proposed MIMO VSS by satisfying the two requirements. An example and computer simulations will be present for showing the usefulness of algorithm.

Adaptive Robust Control for Robot Manipulator with the Uncertain Bound Estimation and Implementation (불확실성의 경계를 추정하는 로봇 매니퓰레이터의 적응견실제어기 설계 및 실험)

  • 한명철;하인철
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.4
    • /
    • pp.312-316
    • /
    • 2004
  • In this paper, it is presented an adaptive robust control system to implement real-time control of a robot manipulator. There are Quantitative or qualitative differences between a real robot manipulator and a robot modeling. In order to compensate these differences, uncertain factors are added to a robot modeling. The uncertain factors come from imperfect knowledge of system parameters, payload change, friction, external disturbance, etc. Also, uncertainty is often nonlinear and time-varying. In the proceeding work, we proposed a class of robust control of a robot manipulator and provided the stability analysis. In the work, we propose a class of adaptive robust control of robot manipulator with bound estimation. Through experiments, the proposed adaptive robust control scheme is proved to be an efficient control technique for real-time control of a robot system using DSP.

Maneuvering detection and tracking in uncertain systems (불확정 시스템에서의 기동검출 및 추적)

  • Yoo, K. S.;Hong, I. S.;Kwon, O. K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.120-124
    • /
    • 1991
  • In this paper, we consider the maneuvering detection and target tracking problem in uncertain linear discrete-time systems. The maneuvering detection is based on X$^{2}$ test[2,71, where Kalman filters have been utilized so far. The target tracking is performed by the maneuvering input compensation based on a maximum likelihood estimator. KF has been known to diverge when some modelling errors exist and fail to detect the maneuvering and to track the target in uncertain systems. Thus this paper adopt the FIR filter[l], which is known to be robust to modelling errors, for maneuvering detection and target tracking problem. Various computer simulations show the superior performance of the FIR filter in this problem.

  • PDF

Robust Stability of Uncertain Discrete-Time Linear Systems with Time-Varying Delays (시변 시간 지연을 갖는 불확실한 이산 시간 선형 시스템의 견실 안정성)

  • Song, Seong-Ho;Park, Seop-Hyeong;Lee, Bong-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.6
    • /
    • pp.641-646
    • /
    • 1999
  • This paper deals with the robust stability of discrete-time linear systems with time- varying delays and norm-bounded uncertainties. In this paper, the magnitude of time-varying delays is assumed to be upper-bounded. The sufficient condition is presented in terms of linear matrix inequality. It is also shown that the robust stability of uncertain discrete-time linear systems with time-varying delays is related with the quadratic stability of uncertain discrete-time linear systems with constant time delay.

  • PDF

A model-based fault diagnosis in uncertain systems

  • Kwon, Oh-Kyu;Sung, Yul-Wan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1210-1215
    • /
    • 1990
  • This paper deals with the fault diagnosis problem in uncertain linear systems having undermodelling, linearization errors and noise inputs. The new approach proposed in this paper uses an appropriate test variable and the difference between system parameters which are estimated by the least squares method to locate the fault. The singular value decomposion is used to decouple the correlation between the estimated system parameters and to observe the trend of parameter changes. Some simulations applied to aircraft ergines show good allocation of the fault even though the system model has significant uncertainties. The feature of the approach is to diagnose the uncertain system through simple parameter operations and not to need complex calculations in the diagnosis procedure as compared with other methods.

  • PDF

An Improved Existence Condition of Linear Sliding Surfaces (선형 슬라이딩 평면의 개선된 존재 조건)

  • Choi, Han-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.9
    • /
    • pp.851-855
    • /
    • 2007
  • This paper deals with the problem of designing a linear sliding surface design for a class of uncertain systems with mismatched unstructured uncertainties. The uncertain system under consideration may have mismatched parameter uncertainties in the state matrix as well as in the input matrix. In terms of linear matrix inequalities (LMIs), we give a sufficient condition for the existence of linear sliding surfaces guaranteeing the asymptotic stability of the sliding mode dynamics. We show that our LMI condition can be less conservative than the existing conditions and our result supplement the existing results. Finally, we give a numerical example showing that our method can be better than the previous results.

Design of sliding mode controller for uncertain multivariable systems in the absence of matching conditions (정합조건이 만족되지 않는 불확실한 다변수 계통에 대한 슬라이딩 모드 제어기의 설계)

  • 천희영;박귀태;김동식;임성준;공진수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.439-445
    • /
    • 1990
  • All models of dynamical systems invariably have some measure of uncertainties associated with some of their dynamics. The recent approaches to establish robustness of stabilizing feedback control against the possible uncertainties have a serious limitation, that is their applicability only to the systems that satisfy the matching conditions. Such conditions are rarely met in general applications. If a particular system satisfies the matching conditions, the addition of an actuator will destroy the satisfaction of such conditions. In this paper, we develop robust control algorithm for uncertain multivariable systems in which the matching conditions are not necessarily met. We empoly Lyapunov's second method to derive robust stabilizing controllers which guarantee asymptotic stability against prescribed uncertainties. The derivation consists of transforming the original uncertain system to controllable canonical form and constructing a constant switching surface by designing the closed-loop characteristics as a function of the uncertainties. Numerical examples are discussed as illustrations.

  • PDF

A Robust Adaptive Controller for Markovian Jump Uncertain Nonlinear Systems with Wiener Noises of Unknown Covariance

  • Zhu, Jin;Xi, Hong-Sheng;Ji, Hai-Bo;Wang, Bing
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.2
    • /
    • pp.128-137
    • /
    • 2007
  • A robust adaptive controller design for a class of Markovian jump parametric -strict-feedback systems is given. The disturbances considered herein include both uncertain nonlinearities and Wiener noises of unknown covariance. And they satisfy some bound-conditions. By using stochastic Lyapunov method in Markovian jump systems, a switching robust adaptive controller was obtained that guarantees global uniform ultimate boundedness of the closed-loop jump system.