• Title/Summary/Keyword: unburned-carbon

Search Result 133, Processing Time 0.029 seconds

Effect of Particle Size and Unburned Carbon Content of Fly Ash from Hadong Power Plant on Compressive Strength of Geopolymers (하동화력발전소 비산재의 입도크기와 미연탄소 함량이 지오폴리머의 압축강도에 미치는 영향)

  • Kang, Nam-Hee;Chon, Chul-Min;Jou, Hyeong-Tae;Lee, Sujeong
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.510-516
    • /
    • 2013
  • Fly ash is one of the aluminosilicate sources used for the synthesis of geopolymers. The particle size distribution of fly ash and the content of unburned carbon residue are known to affect the compressive strength of geopolymers. In this study, the effects of particle size and unburned carbon content of fly ash on the compressive strength of geopolymers have been studied over a compositional range in geopolymer gels. Unburned carbon was effectively separated in the $-46{\mu}m$ fraction using an air classifier and the fixed carbon content declined from 3.04 wt% to 0.06 wt%. The mean particle size ($d_{50}$) decreased from $22.17{\mu}m$ to $10.79{\mu}m$. Size separation of fly ash by air classification resulted in reduced particle size and carbon residue content with a collateral increase in reactivity with alkali activators. Geopolymers produced from carbon-free ash, which was separated by air classification, developed up to 50 % higher compressive strength compared to geopolymers synthesized from raw ash. It was presumed that porous carbon particles hinder geopolymerization by trapping vitreous spheres in the pores of carbon particles and allowing them to remain intact in spite of alkaline attack. The microstructure of the geopolymers did not vary considerably with compressive strength, but the highest connectivity of the geopolymer gel network was achieved when the Si/Al ratio of the geopolymer gel was 5.0.

Separation of Unburned Carbon from Coal Fly Ash Using and Electrocyclone (電氣빠이클론을 이용한 石炭灰 중 미연탄소 저감기술 開發)

  • 조희찬;김정윤
    • Resources Recycling
    • /
    • v.10 no.3
    • /
    • pp.14-22
    • /
    • 2001
  • For the recycle of coal fly ash generated from power stations, we developed an electrocyclone system which can separate unburned carbon form coal fly ash, based on the fact that coarse fly ash particles contain higher amount of unburned carbon and unburned carbon particles are charged positively, and pure ash particles are charged negatively on contacting each other. Additionally, guide vanes were installed in the cyclone to control the cut size. Two types of electrode, stick and grid type, were designed to investigate the effect of electrode type. Results show that by introducing an electric field inside the cyclone, the yield increases by 5 to 15e1o. But the content of unburned carbon in the clean ash does not change significantly.

  • PDF

Properties of the Sintered Eco-brick according to the Unburned Carbon Content of the Coal Briquette Ash (연탄재(煉炭滓)의 미연탄소(未燃炭素) 함량(含量)에 따른 소성(燒成) 에코벽돌 특성(特性))

  • Park, Hong-Kyu;Yoo, Seung-Woo;Jung, Moon-Young
    • Resources Recycling
    • /
    • v.19 no.3
    • /
    • pp.16-23
    • /
    • 2010
  • Coal briquette use has dramatically increased because of high oil prices. Hence, it is necessary to develop an environment-friendly recycling technique of the coal briquette ash. The coal briquette ash contains a large amount of an unburned carbon content and a mullite with high thermal property, so it is considered to be used as raw materials of sintered eco-brick. This study aimed to investigate on how the unburned carbon affects properties of the sintered eco-brick. The eco-brick was mixed with the ratio of 50 wt% coal briquette ash having the unburned carbon 10.5 wt% and 50 wt% cullet, then being sintered at $950^{\circ}C$, which of the compressive strength was in line with the first class of the sintered clay brick standard(KS L 4201). In particular, the compressive strength of the sintered eco-brick was equal to the first class of the KS L 4201 despite the increase of mixing ratio for coal briquette ash with 1.0 wt% unburned carbon to 70 wt%.

Physicochemical Properties of Unburned Carbon from Fly Ash (비산회로부터 회수한 미연탄소분의 물리.화학적 특성)

  • 안양규;양정일
    • Resources Recycling
    • /
    • v.7 no.1
    • /
    • pp.14-19
    • /
    • 1998
  • Tile pl~ysimchemical properties of residual or unburned carbon obtaincd from fly ash were mestigated. The carbon-enrichcd samples were extracted from fly ash by flotalion mcthod. Tnz carbon content and chemical compos~lion of t b recovered carbon sample were analyzed. The ash in the carbon sample was also examined. The unburned carbon characterization included measurement oE sire distibution, sudace area, crystal shuchlre md density.

  • PDF

A simple estimate of the carbon budget for burned and unburned Pinus densiflora forests at Samcheok-si, South Korea

  • Lim, Seok-Hwa;Joo, Seung Jin;Yang, Keum-Chul
    • Journal of Ecology and Environment
    • /
    • v.38 no.3
    • /
    • pp.281-291
    • /
    • 2015
  • To clarify the effects of forest fire on the carbon budget of a forest ecosystem, this study compared the seasonal variation of soil respiration, net primary production and net ecosystem production (NEP) over the year in unburned and burned Pinus densiflora forest areas. The annual net carbon storage (i.e., NPP) was $5.75t\;C\;ha^{-1}$ in the unburned site and $2.14t\;C\;ha^{-1}$ in the burned site in 2012. The temperature sensitivity of soil respiration (i.e., $Q_{10}$ value) was higher in the unburned site than in the burned site. The annual soil respiration rate was estimated by the exponential regression equation with the soil temperatures continuously measured at the soil depth of 10 cm. The estimated annual soil respiration and heterotrophic respiration (HR) rates were 8.66 and $4.50t\;C\;ha^{-1}yr^{-1}$ in the unburned site and 4.08 and $2.12t\;C\;ha^{-1}yr^{-1}$ in the burned site, respectively. The estimated annual NEP in the unburned and burned forest areas was found to be 1.25 and $0.02t\;C\;ha^{-1}yr^{-1}$, respectively. Our results indicate that the differences of carbon budget and cycling between both study sites are considerably correlated with the losses of living plant biomass, insufficient nutrients and low organic materials in the forest soil due to severe damages caused by the forest fire. The burned Pinus densiflora forest area requires at least 50 years to attain the natural conditions of the forest ecosystem prior to the forest fire.

Study on Reduction Unburned Carbon Contents in Low Quality Fly Ash from Vietnam (베트남 저품위 비산재의 미연탄소 함량 저감 연구)

  • Kim, Keeseok;Lee, Jaewon;Lee, Dongwon;Min, Kyongnam
    • Resources Recycling
    • /
    • v.29 no.2
    • /
    • pp.37-47
    • /
    • 2020
  • According to Vietnam government establishes additional thermal power plant, processing the coal ash from power plant is urgent issue. This study targeted reducing unburned carbon contents in low quality fly ash to below 6% that according to international standards. As a result, the unburned carbon contents of low quality fly ash was high and irregular as 5.3~23.6%, and it was possible to reduce unburned cabon contents to under 6%, in case of unburned carbon contents below 9.8% ashes using air classification, in case of unburned carbon contents below 23.6% ashes using combined process composed of air classification and electrostatic separation.

The Fluidity of Cement Pastes with Fly Ashes Containing a Lot of Unburned Carbon

  • Lee, Seung-Heun;Kawakami, Akira;Sakai, Etsuo;Daimon, Masaki
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.3
    • /
    • pp.219-224
    • /
    • 2003
  • Fly ashes containing 6.1~16.5 wt% of unburned carbon were treated thermally at 500$^{\circ}C$ for 3 h and thus, the content of unburned carbon was decreased below 2.1 wt%, the range of particle size distribution became narrower and the mean particle size became smaller. Besides, the properties of particles in fly ashes were improved, particularly the particle shape became close to a spherical type. The fluidity of cement pastes containing fly ashes treated previously at 500$^{\circ}C$ for 3 h was increased much than that of cement pastes containing original fly ashes. When the added amount of superplasticizer was over the saturation amount, there was no correlation between the amount of unburned carbon in fly ashes and the apparent viscosity of cement pastes actually. On the contrary, when the added amount of superplasticizer was below the saturation amount, there was a correlation.

Characterization of Unburned Carbon Particles from Fly Ash Using SEM (비산회로부터 회수한 미연탄소분의 전자현미경을 이용한 특성분석)

  • Ahn, Yang-Kyu;Kil, Dae-Sup
    • Analytical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.567-573
    • /
    • 2002
  • The most important and largest commercial outlet of fly ash in Korea is a replacement material of Portland cement in concrete industry. The high level of unburned carbon in ash brings about some malfunctions in concrete. Therefore, fly ash is refined to improve the quality as a concrete additive. In this process, a lot of the residual carbon is produced, and discarded now. In the present study, to find out a valuable outlet of the enriched carbon samples, the basic morphology of residual carbon in fly ash from Boryung power plant was investigated. The unburned carbon characterization included shape, size measurement, and chemical analysis was examined using scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDX).

Reduction of unburned carbon derived from coal-fired power plant by changing operating conditions (운전조건병경에 의한 미분탄화력의 미연분 저감)

  • Park, Ho-Young;Kim, Young-Ju;Yu, Guen-Sil;Kim, Chun-Kun;Kim, Dong-Hun
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.299-303
    • /
    • 2006
  • From the analysis of fly ash, which contains unburned carbon, collected from the coal-fired Yong Hung power station, most particles are turned out to be hollow cenosphere and agglomerated soot particles. The sooting potential from six coals used in the plant were investigated with CPD model. The results show that the higher potential presented to Peabody, Arthur, Shenhua coals rather than other coals. It is necessary to measure the coal flow rates at each coal feeding pipe for four burner levels since they affect the extent of mixing of soot with oxidant, in turn, the oxidation rate of soot particles. The unbalance in coal flow rate was found in several coal pipes. We successfully reduced unburned carbon in ash by increasing the excess air and changing the SOFA yaw angle.

  • PDF

Pilot-Scale Testing of a Vibrating Electrostatic Separator for Fly Ash Decarbonization

  • Yoon, Roe-Hoan;Eric Yan;Han, Oh-Hyung;Park, Byung-Wook
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.644-649
    • /
    • 2001
  • A new electrostatic separator has been developed for the removal of unburned carbon from fly ash. In this separator, a flowing film of fly ash is created on the surface of a vibrating electrode. Conducting particles such as unburned carbon acquire electrostatic charges and jump out of the flowing film so that they can be removed from the non-conducting fly ash particles moving forward. The new separator has been tested successfully using a pilot-scale test unit at 0.5 tons/hr capacity. Based on the successful test results, a larger unit is being constructed at the present time.

  • PDF