• 제목/요약/키워드: ultra high-strength concrete

검색결과 465건 처리시간 0.029초

초고강도 콘크리트의 제조 및 현장적용성에 관한 연구 (A Study on the Manufacture and Application of Ultra-high Strength Concrete)

  • 최일호;정양희;김욱종;이도범
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2007년도 추계 학술논문 발표대회
    • /
    • pp.1-4
    • /
    • 2007
  • Because reinforced concrete structures were being high more and more in recent year, concrete was being demanded high performance of high strength and high fluidity. But various characteristics must be confirmed besides guarantee of demand strength in ultra-high strength concrete. In ultra-high strength concrete, autogenous shrinkage and drying shrinkage grow big because of a low water cement ratio and much quantity of binder. So dangerousness of crack generation grow big in early ages. And ultra-high strength concrete is influenced by use materials more than ordinary strength concrete. In this study we were examined mix design, atuogenous shrinkage and pumpability of ultra-high strength concrete to apply on the ground.

  • PDF

초고강도 콘크리트의 재료역학적 특성 평가 (An Evaluation of Mechanical Properties of Ultra High Strength Concrete(UHSC))

  • 임희재;신성우;안종문;이광수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.281-284
    • /
    • 2004
  • The most important reason of using of ultra high strength concrete in super tall building is that ultra high strength concrete can reduce the section of members and control side sway effectively. However, the practical utilization of ultra high strength concrete is dependent not only on the production techniques, but also the overall preparation including proper code provisions, construction technique. The purpose of this study is to evaluate of mechanical properties of UHSC, such as modulus of elasticity, stress-strain behavior, modulus of rupture and tensile splitting strength. It is similar to normal or high strength concrete but necessary to discern the difference between normal or high strength concrete and ultra high strength concrete and modify existed equations. And in this study another important factor is to discern the difference according to member size, curing method in ultra high strength concrete experimentally.

  • PDF

초고강도 강섬유 보강 콘크리트의 성능에 미치는 믹서의 영향 (Effect of Mixer on the Performance of Ultra-High Strength Steel Reinforced Concrete)

  • 박정준;고경택;류금성;강수태;김성욱;한상묵
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.549-552
    • /
    • 2006
  • Generally the ultra-high strength steel reinforced concrete has rich mix composition composed of high-strength type mineral admixtures and as a result of very low water-binder ratio(about under w/b=25%), it reveals ultra-high compressive strength(about over 100Mpa). Also, in order to obtain sufficient toughness after construction, we usually mix a large quantity steel fiber with ultra-high strength steel reinforced concrete therefore we must use proper mixer for workability. When we make the ultra-high strength steel reinforced concrete we need more long mixing time or much super-plasticizer than when we manufacture normal concrete. These bring about economical problems and performance deterioration. Therefore, in this study, in order to manufacture easily ultra-high strength steel reinforced concrete we develope a dedicated mixer for ultra-high strength steel reinforced concrete with high speed type. It carried out the examination for comparison between the dedicated and general type mixer, the analysis and counterplan of the point at issue when we manufacture ultra-high strength steel reinforced concrete by the dedicated mixer.

  • PDF

고온가열을 받는 초고강도 콘크리트의 압축강도저하 모델 제안 (Compressive strength degrdation model of Ultra high strength under high temperature)

  • 최경철;김규용;윤민호;이영욱;이보경;김홍섭
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.26-27
    • /
    • 2014
  • Study on high temperature properties of concrete and internal force estimation of structural member subjected to high temperature mainly applied high temperature strength model based on experimental results with concrete under 40MPa. However, it is reported that degradation of internal force at high temperature and spalling of ultra high strength concrete are higher than that of normal strength concrete. Therefore, this study attempts to propose compressive strength degradation model which is suitable to ultra high strength concrete comparing to existing model by evaluating high temperature properties of ultra high strength concrete.

  • PDF

Structural Design of an Ultra High-rise Building Using Concrete Filled Tubular Column with 780 N/㎟ Class High-strength Steel and Fc150 N/㎟ High-strength Concrete

  • Matsumoto, Shuichi;Hosozawa, Osamu;Narihara, Hiroyuki;Komuro, Tsutomu;Kawamoto, Shin-ichiro
    • 국제초고층학회논문집
    • /
    • 제3권1호
    • /
    • pp.73-79
    • /
    • 2014
  • In recent years, the performance requested for which an ultra-high rise buildings is diversified. Large spans are designed in order to gain wide workspace. Column positions are shifted in middle stories to provide space different from neighboring floors. Moreover, in the bottom layers of the building, it is becoming more important to expand freedom to plan flexibility such as creating publically opened wide atria that gives attractive free space. Earthquake-proof criteria is also changing not only human life protection deign but also a design that allows functional continuity. In order to achieve thee needs, as one of technology, we have developed ultra-high strength concrete filled tubular (CFT) columns of the box section that combine ultra-high strength concrete with specified strength of $150N/mm^2$ and ultra-high strength steel material with tensile strength of $780N/mm^2$. In this paper, the outline of development of an ultra-high strength CFT column is reported. Also, the structural design of the ultra-high-rise building using the CFT columns is reported.

압축강도 3116kgf/$\textrm{cm}^2$ 초강도콘크리트의 개발에 관한 실험적 연구 (An Experimental Study on manufacturing Ultra-High Strength Concrete of 3116kgf/$\textrm{cm}^2$ Compressive Strength)

  • 최세진;강석표;최희용;김규용;김진만;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.323-328
    • /
    • 1997
  • The strength of concrete depends on factors of materials, composition and manufacturing method. Among these factors, preparatory experiments are to consider and analyze the factors on compressive strength of ultra-high strength concrete according to types of aggregate, binder content, water-binder ratio, and curing methods. And the final experiment to develop the ultra-high strength over 3,000kgf/$\textrm{cm}^2$ is based on these preparatory experiments. As the result of this final expriment. We could manufacture the ultra-high strength concrete with a marvelous compressive strength concrete with a marvelous compressive strength of 3,116kgf/$\textrm{cm}^2$. This study is to compare and analyze the manufacturing system of ultra-high strength concrete of 3,116kgf/$\textrm{cm}^2$ compressive strength in the side of material development of construction industry.

  • PDF

초고강도 철근콘크리트 띠철근 기둥의 구속효과 (Confined Effect of Ultra High Strength Reinforced Concrete Tied Columns)

  • 한범석;신성우;김태수
    • KIEAE Journal
    • /
    • 제7권4호
    • /
    • pp.105-111
    • /
    • 2007
  • As this study investigates the influence about type of transverse reinforcement, spacing of transverse reinforcement(s), volumetric ratios of transverse reinforcement(${\rho}s$) of ultra-high strength concrete columns. It try to offer to resonable basic data of the confined model for the ultra-high concrete of in reinforced concrete columns. Experimental tests with large scaled columns were conducted under concentric axial loads. The ultra-high strength concrete (100MPa) was used. From this test result, it evaluate influence of the strength enhancement and ductility enhancement, important variables about behavior of the confined concrete by confinement of ultra-high strength reinforced concrete.There are two ways to improve the confinement effect of high strength concrete columns through the increase of amounts and/or strength of transverse reinforcement.

초고강도 콘크리트 제조를 위한 세라믹골재 개발 (Application of Ceramic Aggregate for Ultra-High Strength Concrete)

  • 김송호;강석화;송용순;김강민
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.389-392
    • /
    • 2008
  • 최근 들어 콘크리트 구조물이 대형화됨에 따라 초고강도 콘크리트에 대한 관심이 높아지고 있다. 초고강도 콘크리트 개발을 위해서는 혼화제, 혼합재 등의 재료와 더불어 골재의 품질(초고강도, 균질성)이 중요한 요인으로 작용한다. 그러나 일반적으로 사용되는 자연골재(쇄석 포함)는 전체 로트가 초고강도 품질을 유지하기가 어렵기 때문에 초고강도용으로 사용하기에는 많은 제약점이 있다. 본 연구에서는 균일한 초고강도 품질을 보장할 수 있는 세라믹 골재를 개발하여 초고강도 콘크리트에 적용하였다. 골재와 시멘트 페이스트 계면의 접착력을 높이도록 표면 코팅 처리된 초고강도 세라믹 골재를 적용하여 초고강도 콘크리트를 제조하였다. 천연 골재와 비슷한 비중의 세라믹 골재와 더불어 세라믹 골재를 경량화(밀도 2.2 $g/cm^3$)한 콘크리트 실험도 실시하였다.

  • PDF

잔골재 혼합사용이 석회암 굵은 골재 사용 초고강도 콘크리트의 유동특성에 미치는 영향 (Effect of Mixed Use of Fine Aggregates on the Flowability of Ultra High Strength Concrete)

  • 이홍규;김민영;이순재;조만기;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 춘계 학술논문 발표대회
    • /
    • pp.73-74
    • /
    • 2015
  • As this study is one related to ultra high strength concrete using crushed coarse limestone aggregates among the series of experiments for improving the economic inefficiency of the ultra high strength concretes used for high rise structures, it has analyzed the flowability of ultra high strength concrete according to the variation of blended fine aggregates. As a result of analyzing the characteristics of fresh concrete, it is determined that the application of ultra high strength concrete would be difficult in case of a mix using blended fine aggregates as lower flowability than the mix using limestone crushed fine aggregate only was shown in all mixes using blended fine aggregates.

  • PDF

압축강도2300kg/$\textrm{cm}^2$의 초고강도콘크리트의 개발에 관한 실험적 연구 -제 2보, 초고강도콘크리트의 제조에 관한 실험을 중심으로- (An Experimental Study on Manufacturing Ultra-High Strength Concrete of 2300kg/$\textrm{cm}^2$ Compressive Strength -Part 2, The Experiment on the Manufacture of the U-H-S Concrete-)

  • 김진만;최희용;김규용;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.252-255
    • /
    • 1995
  • To reduce the size of structural members, high strength concrete has recently been utilized for structure such as ultra-high-rise buildings and prestressed concrete bridges in North America. And its compressive strength has gone up to 1300kgf/$\textrm{cm}^2$. In Japan. research on high-strength concrete has been undertaken on a large scale by the national enterprise so-called New RC Project, and this Project purposed to develop the design compressive strength of 1200kgf/$\textrm{cm}^2$. Considering these circumstance. the aim of this experimental study is to develop ultra-high-strength concrete with compressive strenght over 2300kgf/$\textrm{cm}^2$ with domestic current materials. There are so many factors which influence the manufacturing of ultra-high-strength concrete. The experimental factors selected in this study are mixing methods. curing methods. water-binder ratio, maximum size of coarse aggregate, and the replacement proportion of cement by silica fume. The results of this expermental study show that it is possible to develop the ultra-high-stength concrete with compressive strength over 2300kgf/$\textrm{cm}^2$.

  • PDF