• Title/Summary/Keyword: ultra high temperature (UHT) milk

Search Result 22, Processing Time 0.021 seconds

Effect of Homogenization Pressure on Plasmin Activity and Mechanical Stress-Induced Fat Aggregation of Commercially Sterilized Ultra High Temperature Milk during Storage

  • Kim, Sun-Chul;Yun, So-Yul;Ahn, Na-Hyun;Kim, Seong-Min;Imm, Jee-Young
    • Food Science of Animal Resources
    • /
    • v.40 no.5
    • /
    • pp.734-745
    • /
    • 2020
  • Commercially sterilized ultra high temperature (UHT) milk was manufactured at different homogenization pressures (20, 25, and 30 MPa), and changes in fat particle size, mechanical stress-induced fat aggregation, plasmin activity, and lipid oxidation were monitored during ambient storage of the UHT milk for up to 16 wk. The particle sizes of milk fat globules were significantly decreased as homogenization pressure increased from 20 to 30 MPa (p<0.05). The presence of mechanical stress-induced fat aggregates in milk produced at 20 MPa was significantly higher than for UHT milk produced at either 25 or 30 MPa. This difference was maintained all throughout the storage. There were no significant differences in plasmin activity, trichloroacetic acid (12%, w/v) soluble peptides, and the extent of lipid oxidation. Based on these results, an increase of homogenization pressure from 20 (the typical homogenization pressure employed in the Korea dairy industry) to 25-30 MPa significantly decreased mechanical stress-induced fat aggregation without affecting susceptibility to lipid oxidation during storage.

Effects of Heat Treatment on the Nutritional Quality of Milk III. Effect of Heat Treatment on Killing Pathogens in Milk (우유의 열처리가 우유품질과 영양가에 미치는 영향: III. 우유 열처리에 의한 병원균 사멸효과)

  • Moon, Yong-II;Jung, Ji Yun;Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.121-133
    • /
    • 2017
  • A small amount of milk is sold as 'untreated' or raw in the US; the two most commonly used heat-treatments for milk sold in retail markets are pasteurization (LTLT, low-temperature long time; HTST, high-temperature short time) and sterilization (UHT, ultra-high temperature). These treatments extend the shelf life of milk. The main purpose of heat treatment is to reduce pathogenic and perishable microbial populations, inactivate enzymes, and minimize chemical reactions and physical changes. Milk UHT processing combined with aseptic packaging has been introduced to produce shelf-stable products with less chemical damage than sterile milk in containers. Two basic principles of UHT treatment distinguish this method from in-container sterilization. First, for the same germicidal effect, HTST treatments (as in UHT) use less chemicals than cold-long treatment (as in in-container sterilization). This is because Q10, the relative change in the reaction rate with a temperature change of $10^{\circ}C$, is lower than the chemical change during bacterial killing. Based on Q10 values of 3 and 10, the chemical change at $145^{\circ}C$ for the same germicidal effect is only 2.7% at $115^{\circ}C$. The second principle is that the need to inactivate thermophilic bacterial spores (Bacillus cereus and Clostridium perfringens, etc.) determines the minimum time and temperature, while determining the maximum time and temperature at which undesirable chemical changes such as undesirable flavors, color changes, and vitamin breakdown should be minimized.

A Study on the Sensory Characteristics of Various Heat Treated Milks (살균 온도에 따른 시판 우유의 관능적 특성 비교 연구)

  • 박신인
    • Journal of Food Hygiene and Safety
    • /
    • v.10 no.1
    • /
    • pp.19-22
    • /
    • 1995
  • Sensory characteristics of various milk samples-low-temperature long-time(LTLT) milk, high-temperature short-time (HTST) milk and ultra-high temperature (UHT) milk-were investigated using chemical analysis and sensory evaluation. The chemical composition was not much different among the milk samples. The results of evaluation of preference for color, flavor, taste and overall desirability of the milk samples by scoring and ranking tests indicated that significant difference on the sensory quality was recognized at 0.01 percent level. UHT milk samples (especially sample F and H) had better sensory acceptability than LTLT milk HTST milk samples.

  • PDF

Effects of the Heat-Treatment on the Nutritional Quality of Milk - I. Historical Development of the Heat-Treatment Technology in Milk - (우유의 열처리가 우유품질과 영양가에 미치는 영향 - I. 우유 열처리 기술의 발달사 -)

  • Jung, Anna;Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.271-278
    • /
    • 2016
  • The main purpose of milk heat-treatment is to improve milk safety for consumer by destroying foodborne pathogens. Secondly, heat-treatment of milk is to increase maintaining milk quality by inactivating spoilage microorganisms and enzymes. Pasteurization is defined by the International Dairy Federation (IDF, 1986) as a process applied with the aim of avoiding public health hazards arising from pathogens associated with milk, by heat treatment which is consistent with minimal chemical, physical and organoleptic changes in the product. Milk pasteurization were adjusted to $63{\sim}65^{\circ}C$ for 30 minutes (Low temperature long time, LTLT) or $72{\sim}75^{\circ}C$ for 15 seconds (High temperature short time, HTST) to inactivate the pathogens such as Mycobacterium bovis, the organism responsible for tuberculosis. Ultra-high temperature processing (UHT) sterilizes food by heating it above $135^{\circ}C$ ($275^{\circ}F$) - the temperature required to destroy the all microorganisms and spores in milk - for few seconds. The first LTLT system (batch pasteurization) was introduced in Germany in 1895 and in the USA in 1907. Then, HTST continuous processes were developed between 1920 and 1927. UHT milk was first developed in the 1960s and became generally available for consumption in the 1970s. At present, UHT is most commonly used in milk production.

Chemical and Microbiological Quality, Capillary Electrophoresis Pattern, and Rennet Coagulation of UHT-treated and Irradiated Milk

  • Ham, Jun-Sang;Shin, Ji-Hye;Noh, Young-Bae;Jeong, Seok-Geun;Han, Gi-Sung;Chae, Hyun-Seok;Yoo, Young-Mo;Ahn, Jong-Nam;Lee, Wan-Kyu;Jo, Cheo-Run
    • Food Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.58-65
    • /
    • 2008
  • To see the possibility of irradiation as an alternative to ultra high temperature (UHT) sterilization, the quality characteristics of milk were analyzed. Milk treated by UHT ($135^{\circ}C$ for 4 sec) and irradiation at higher than 3 kGy showed no viable counts after 7 days of storage at $4^{\circ}C$. The contents of certain amino acids of milk, such as Arg, Asp, Glu, Ile, Leu, Lys, Pro, Ser, Thr, and Tyr, were lower in irradiated groups at 10 kGy than in UHT-treated one, but no difference was observed between irradiated milks at less than 5 kGy and UHT. The capillary electrophoresis (CE) patterns of the milk irradiated at 10 kGy showed a similar trend to the raw milk, low temperature long time (LTLT, $63^{\circ}C$ for 30 min), and high temperature short time (HTST, $72^{\circ}C$ for 15 sec) treated. However, the CE pattern of UHT-treated milk was different. Rennet coagulation test agreed with the CE results, showing that all milk samples were coagulated by rennet addition except for UHT-treated milk after 1 hr. These results suggest that irradiation of milk reduce the content of individual amino acids but it may not induce severe conformational change at a protein level when compared with UHT treatment.

Effects of Heat Treatment on the Nutritional Quality of Milk: II. Destruction of Microorganisms in Milk by Heat Treatment (우유의 열처리가 우유품질과 영양가에 미치는 영향: II. 열처리에 의한 우유의 미생물 사멸효과)

  • Kim, Kwang-Hyun;Park, Dae Eun;Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.35 no.1
    • /
    • pp.55-72
    • /
    • 2017
  • The second article of 'Effects of heat treatment on the nutritional quality of milk,' titled 'Destruction of microorganisms in milk by heat treatment' and authored by Dr. Seong Kwan Cha, who worked at the Korea Food Research Institute, covers the heat-stable microorganisms that exist in milk after pasteurization. The article focusses on the microbiological quality of raw milk and market milk following heat treatment, and is divided into four sub-topics: microbiological quality of raw milk, survey and measurement of microorganisms killed in raw milk, effect on psychrophilic and mesophilic microorganisms, and effect of heat treatment methods on thermoduric microorganisms. Bacillus spp. and Clostridium spp. are sporeforming gram-positive organisms commonly found in soil, vegetables, grains, and raw and pasteurized milk that can survive most food processing methods. Since spores cannot be inactivated by LTLT (low temperature long time) or HTST (high temperature short time) milk pasteurization methods, they are often responsible for food poisoning. However, UHT (ultra high temperature) processing completely kills the spores in raw milk by heating it to temperatures above $130^{\circ}C$ for a few seconds, and thus, the UHT method is popularly used for milk processing worldwide.

Changes in Quality Characteristics of Commercial Milk with Different Physical Treatments during Storage

  • Choi, Jinyoung;Kim, Youngsung;Kwon, Taeeun
    • Culinary science and hospitality research
    • /
    • v.24 no.2
    • /
    • pp.63-70
    • /
    • 2018
  • In this study, the fatty acid content and quality characteristics of the massless enegy treated commercial milk products stored at $30^{\circ}C$ were investigated. The pH of pasteurized milk decreased significantly. UHT milk showed also significant decrease in pH to 4.70~5.72 on the 8th day of storage which was higher than control even there was no significant differences. The acidity of pasteurized milk decreased significantly from the 2nd day of storage to 0.13~0.65% in treatments and control and control was 0.94% at the 8th day of storage and 0.35% in the treatment of ultra high temperature milk. The solid content of pasteurized milk was $7.5^{\circ}Bx$ at 1 day after storage, which showed significant differences from the $11.2^{\circ}Bx$ in the treatment. Pasteurized milk showed more bacterial growth in the treatment than in the control. After 4 days of storage, there was no bacterial count in pasteurized milk but it increased significantly $1.9{\times}10^8$ and $4.5{\times}10^6$ each in UHT milk. Lactic acid bacteria were detected in the curd $2.0{\times}10^6$ in the control and $2.0{\times}10^8$ in the treatment at the 4th day. Palmitic acid content in the saturated fatty acid was the highest at 35.4~41.4% in both pasteurized and ultra high temperature milk. In the UHT milk, linolenic acid was significantly increased to 3.8% in the treatment compared with 2.9% in the control at the 4th day of storage. Therefore, commercial ultra high temperature milk with physical treatment to increase beneficial bacteria showed significant difference compared to the control after 5 days of storage in this experiment.

Gelation Behavior of Ultra High Temperature Pasteurized Milk during Storage (초고온 살균유의 저장 중 겔 형성 거동)

  • 조영희;홍윤호
    • Food Science of Animal Resources
    • /
    • v.20 no.1
    • /
    • pp.8-14
    • /
    • 2000
  • In order to examine physicochemical gelation behavior of ultra high temperature(UHT) pasteurized milk during storage at 4$^{\circ}C$ and 25$^{\circ}C$, pH, electrophoresis, alcohol test, sialic acid contents and free amino groups contents were biweekly determined. The pH of UHT pasteurized milk decreased with increasing storage time. Gelation of the UHT milk occured faster at 25$^{\circ}C$ than at 4$^{\circ}C$ with larger decreasing rate of pH. The alcohol test showed positive results at lower pH than 6.5, which could indicate the casein instability and beginning of gelation. The electrophoretic patterns showed a decrease in the concentrations of all caseins. Degradation of k-casein was faster in all cases, while $\alpha$-casein and $\beta$-casein were also extensively degraded later. The sialic acid contents of the samples increased gradually during storage, and the increasing rate was higher before gel formation. The free amino groups of the samples increased gradually during storage. The increasing rate of free amino groups was faster at 25$^{\circ}C$ than at 4$^{\circ}C$. The samples stored at 25$^{\circ}C$ gelled earlier than those stored at 25$^{\circ}C$, with corresponding increase of free amino groups. The residual proteolytic enzymes, which survived during the UHT heat treatments and were reactivated during storage, could be responsible for UHT pasteurized milk gelation during storage. It is assumed that proteolytic degradation of caseins followed by aggregation would be attributable to complicated reaction mechanism.

  • PDF

국내 시판우유의 보관방법별 품질변화에 관한 연구

  • Jeong, Seok-Chan;Kim, Gye-Hui;Jeong, Myeong-Eun;Kim, Seong-Il;Byeon, Seong-Geun;Lee, Deuk-Sin;Park, Seong-Won;Jo, Nam-In;Kim, Ok-Gyeong
    • 한국유가공학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.23-40
    • /
    • 2002
  • This study was conducted to investigate the quality changes of the UHT(ultra-high temperature), LTLT(law temperature long time) and HTST(high temperature short time) treated milk samples by storage conditions for 6 months from August 2000 to February 2001. The UHT treated milk samples collected from 3 plants(A, B and C) were stored at l0$^{\circ}$C and room temperature(dark and light exposure) for 6 months, and the LTLT and HTST treated milk samples(D and E) were also stored for 30 days. The UHT pasteurized milk of A, B and C plant was treated at 130$^{\circ}$C for 2-3s, 133$^{\circ}$C for 2-3s and 135$^{\circ}$C for 4s, respectively. The UHT sterilized milk of A and B plant was treated at 140$^{\circ}$C for 2-3s and 145$^{\circ}$C for 3-4s, respectively. The LTLT milk of D plant was treated at 63$^{\circ}$C for 30 mins, and the HTST milk of E plant was treated at 72$^{\circ}$C for 15s. All of the raw milk samples collected from storage tank in 5 milk plants were showed less than 4.0 X 10$^5$cfu/ml in standard plate count, and normal level in acidity, specific gravity, and component of milk. Preservatives, antibiotics, sulfonamides and available chloride were not detected in both raw and heat treated milk samples obtained from 5 plants. One(10%) of 10 UHT pasteurized milk samples obtained from B plant and 2 (20%) of 10 from C were not detected in bacterial count after storage at 37$^{\circ}$C for 14 days, but all of the 10 milk samples from A were detected. No coliforms were detected in all samples tested. No bacteria were also detected in carton, polyethylene and tetra packs collected from the milk plants. A total of 300 UHT pasteurized milk samples collected from 3 plants were stored at room(3$^{\circ}$C ${\sim}$ 30$^{\circ}$C) for 3 and 6 months, 11.3%(34/300) were kept normal in sensory test, and 10.7%(32/300)were negative in bacterial count. The UHT pasteurized milk from A deteriorated faster than the UHT pasteurized milk from B and C. The bacterial counts in the UHT pasteurized milk samples stored at 10$^{\circ}$C were kept less than standard limit(2 ${\times}$ 10$^4$ cfu/ml) of bacteria for 5 days, and bacterial counts in some milk samples were a slightly increased more than the standard limit as time elapsed for 6 months. When the milk samples were stored at room(3$^{\circ}$C ${\sim}$ 30$^{\circ}$C), the bacterial counts in most of the milk samples from A plant were more than the standard limit after 3 days of storage, but in the 20%${\sim}$30%(4${\sim}$6/20) of the milk samples from B and C were less than the standard limit after 6 months of storage. The bacterial counts in the LTLT and HTST pasteurized milk samples were about 4.0 ${\times}$ 10$^3$ and 1.5 ${\times}$ 101CFU/ml at the production day, respectively. The bacterial counts in the samples were rapidly increased to more than 10$^7$ CFU/ml at room temperature(12$^{\circ}$C ${\sim}$ 30$^{\circ}$C) for 3 days, but were kept less than 2 ${\times}$ 10$^3$ CFU/ml at refrigerator(l0$^{\circ}$C) for 7 days of storage. The sensory quality and acidity of pasteurized milk were gradually changed in proportion to bacterial counts during storage at room temperature and 10$^{\circ}$C for 30 days or 6 months. The standard limit of bacteria in whole market milk was more sensitive than those of sensory and chemical test as standards to determine the unaccepted milk. No significant correlation was found in keeping quality of the milk samples between dark and light exposure at room for 30 days or 6 months. The compositions of fat, solids not fat, protein and lactose in milk samples were not significantly changed according to the storage conditions and time for 30 days or 6 months. The UHT sterilized milk samples(A plant ; 20 samples, B plant ; 110 samples) collected from 2 plants were not changed sensory, chemical and microbiological quality by storage conditions for 6 months, but only one sample from B was detected the bacteria after 60 days of storage. The shelflife of UHT pasteurized milk in this study was a little longer than that reported by previous surveys. Although the shelflife of UHT pasteurized milk made a significant difference among three milk plants, the results indicated that some UHT pasteurized milk in polyethylene coated carton pack could be stored at room temperature for 6 months. The LTLT and HTST pasteurized milk should be sanitarily handled, kept and transported under refrigerated condition(below 7$^{\circ}$C) in order to supply wholesome milk to consumers.

  • PDF

Microbial and Nutritional Quality of Extended Shelf Life (ESL) Milk

  • Imm, Jee-Young;Kim, Jong-Gun;Kim, Ji-Uk;Park, Soon-Ok;Oh, Se-Jong;Kim, Young-Jin;Chun, Ho-Nam;Jung, Hoo-Kil;You, Seung-Kwon;Whang, Kwang-Yeon;Kim, Sae-Hun
    • Food Science and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.752-757
    • /
    • 2005
  • Changes in milk quality during storage of extended shelf life milk (ESL milk) and non-ESL milk were evaluated. No significant differences were observed between ESL and typical ultra high temperature-treated (UHT) milk in physicochemical properties including non-casein nitrogen (NCN) content, whey protein nitrogen index (WPNI), and L-ascorbic acid content. Low temperature and long time-treated milk (LTLT milk) had significantly higher NCN content and WPNI than those of UHT milk. In terms of microbial quality, yeast, molds, coliforms, and other bacteria were not detected in ESL milk during entire storage (21 days after expiration date) period at 4 and $25^{\circ}C$, while LTLT milk was more susceptible to microbial infection. Rats fed ESL milk resulted in significantly higher body weight, average daily gain, and feed efficiency than those given UHT milk. These results suggest ESL milk maintains better microbial quality than typical UHT milk, particularly during storage under extended refrigeration and at high temperature.