• 제목/요약/키워드: ultra fine slag

검색결과 25건 처리시간 0.032초

Strength and durability of ultra fine slag based high strength concrete

  • Sharmila, Pichaiya;Dhinakaran, Govindasamy
    • Structural Engineering and Mechanics
    • /
    • 제55권3호
    • /
    • pp.675-686
    • /
    • 2015
  • The use of ground granulated blast furnace slag (GGBFS) from steel industries waste is showing perspective application in civil engineering as partial substitute to cement. Use of such waste conserves natural resources and minimizes the space required for landfill. The GGBFS used in the present work is of ultra fine size and hence serves as micro filler. In this paper strength and durability characteristics of ultra fine slag based high strength concrete (HSC) (with a characteristic compressive strength of 50 MPa) were studied. Cement was replaced with ultra fine slag in different percentages of 5, 10, and 15% to study the compressive strength, porosity, resistances against sulfate attack, sorptivity and chloride ion penetration. The experiments to study compressive strength were conducted for different ages of concrete such as 7, 28, 56, and 90 days. From the detailed investigations with 16 mix combinations, 10% ultra fine slag give better results in terms of strength and durability characteristics.

Effect of ultra-fine slag on mechanical and permeability properties of Metakaolin-based sustainable geopolymer concrete

  • Parveen, Parveen;Mehta, Ankur;Saloni, Saloni
    • Advances in concrete construction
    • /
    • 제7권4호
    • /
    • pp.231-239
    • /
    • 2019
  • The present study deals with the development of metakaolin-based geopolymer concrete (GPC) and thereafter studying the effects of adding ultra-fine slag on its mechanical and permeability characteristics. The mechanical characteristics including compressive, split tensile, flexural strengths and elastic modulus were studied. In addition, permeability characteristics including water absorption, porosity, sorptivity and chloride permeability were studied up to 90 days. The results showed the effective utilization of metakaolin for the development of elevated temperature cured geopolymer concrete having high 3-day compressive strength of 42.6 MPa. The addition of ultra-fine slag up to 15%, as partial replacement of metakaolin resulted in an increase in strength characteristics. Similar improvement in durability properties was also observed with the inclusion of ultra-fine slag up to 15%. Beyond this optimum content of 15%, further increase in ultra-fine slag content affected the mechanical as well as permeability parameters in a negative way. In addition, the relationship between various properties of GPC was also derived.

Mechanical and microstructural study of rice husk ash geopolymer paste with ultrafine slag

  • Parveen, Parveen;Jindal, Bharat Bhushan;Junaid, M. Talha;Saloni, Saloni
    • Advances in concrete construction
    • /
    • 제8권3호
    • /
    • pp.217-223
    • /
    • 2019
  • This paper presents the mechanical and microstructural properties of the geopolymer paste which was developed by utilizing the industrial by-products, rice husk ash (RHA) and ultra-fine slag. Ultra-fine slag particles with average particle size in the range of 4 to 5 microns. RHA is partially replaced with ultra-fine slag at different levels of 0 to 50%. Sodium silicate to sodium hydroxide ratio of 1.0 and alkaline liquid to binder (AL/B) ratio of 0.60 is taken. Setting time, compressive, flexural strengths were studied up to the age of 90 days with different concentrations of NaOH. The microstructure of the hybrid geopolymer paste was studied by performing the SEM, EDS, and XRD on the broken samples. RHA based geopolymer paste blended with ultrafine slag resulted in high compressive and flexural strengths and increased setting times of the paste. Strength increased with the increase in NaOH concentration at all ages. The ultra-small particles of the slag acted as a micro-filler into the paste and enhanced the properties by improving the CASH, NASH, and CSH. The maximum compressive strength of 70MPa was achieved at 30% slag content with 16M NaOH. The results of XRD, SEM, and EDS at 30% replacement of RHA with ultra-fine slag densified the paste microstructure.

초고강도 콘크리트에서 전기로 산화 슬래그 잔골재 사용에 의한 강도 증진 기구 (Mechanism of Strength Development in Ultra High Strength Concrete Using the Electric Arc Furnace Oxidizing Slag as Fine Aggregate)

  • 이승헌;임두섭;이승훈;이주하
    • 콘크리트학회논문집
    • /
    • 제25권1호
    • /
    • pp.3-9
    • /
    • 2013
  • 초고강도 콘크리트에서 잔골재로 세척사 대신에 전기로 산화 슬래그를 사용했을 경우, 재령 91일 압축강도가 약 15 MPa 정도 향상되었다. 압축강도가 향상된 원인을 규명하기 위해 잔골재의 Ca 성분 용출 특성을 고찰하였고, 잔골재와 페이스트 계면에서의 미세조직, 기공율, 미소경도 및 Ca/Si 몰비를 검토하였다. 그리고 잔골재 형상에 의한 강도 증진 효과를 알아보기 위해 잔골재의 표면 거칠기를 AFM으로 측정하였다. 실험 결과, 초고강도 콘크리트에서 전기로 산화 슬래그 잔골재 사용에 의한 강도 증진 기구는 화학적 기구와 물리적 기구로 구분할 수 있다. 화학적 기구로는, 전기로 산화 슬래그에서 함유되어 있는 가용성 Ca 성분이 용출되어 잔골재와 페이스트 사이에 반응생성물을 형성시켜 조직을 치밀화 시킴으로 잔골재-페이스트간의 부착력을 증진 시키는 것으로 나타났다. 그리고 물리적 기구로는, 전기로 산화 슬래그 잔골재는 세척사에 비해 표면의 굴곡도가 2배 정도 커서, 잔골재와 페이스트 간의 interlocking strength를 증가시킴으로서 압축강도 발현에 기여하는 것으로 판단했다.

전기로 산화슬래그 잔골재와 석회암 골재의 조합사용이 80MPa급 초고강도 콘크리트의 공학적 특성에 미치는 영향 (The Effect of Combinations of Electric Arc Furnace Slag and Lime Stone aggregates on Engineering Properties of Ultra High Strength Concrete with 80MPa)

  • 한민철;문병룡
    • 한국건설순환자원학회논문집
    • /
    • 제5권3호
    • /
    • pp.253-260
    • /
    • 2017
  • 본 연구에서는 초고강도 콘크리트의 경제적인 제조 방안을 제시하기 위하여 국내에 유통되는 석회암골재와 전기로 산화슬래그를 잔골재로 조합사용하여 이들이 80MPa급 초고강도 콘크리트의 제반 물성에 미치는 영향을 실험적으로 고찰하고자 한다. 골재종류로서 화강암 굵은골재, 석회암 굵은골재 조합에 잔골재로서 석회암, 화강암을 사용하였고, 추가적으로 석회암 잔골재에 전기로 산화슬래그 잔골재를 25% 및 50% 치환한 조합으로 골재를 선정하였다. 연구결과에 따르면, 석회암 잔굵은골재를 사용한 경우와 여기에 전기로 산화슬래그 잔골재를 치환한 경우 설계된 고성능 감수제량으로도 목표 슬럼프플로를 만족하였으나, 화강암골재를 사용한 경우 목표값을 만족시키지 못해 고성능 감수제량을 증가시켜주어야 할 것으로 판단된다. 압축강도의 경우 석회암골재의 높은 탄성계수에 기인하여 화강암 골재를 사용한 경우보다 높은 콘크리트 압축강도를 발휘하였고, 전기로 산화슬래그를 치환한 경우 28일이후 강도가 다소 저하하는 것으로 나타났다. 자기수축은 석회암잔골재에 전기로 산화슬래그잔골재를 치환한 경우 자기수축을 9~25%정도 저감시킬 수 있는 것으로 나타났다.

유동화재 변화에 따른 초미립자 시멘트의 유동특성 (Flow properties of Ultra Fine Cement with Superplasticizer)

  • 채재홍;이종열;이웅종;박경상;김진춘;이세웅
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.58-63
    • /
    • 1999
  • Almost all concrete structures have many inevitable cracks for various reasons such as drying shrinkage, heat liberation of cement, fatigues or repeating loads and movements. Conventionally, they are repaired with epoxy materials. The Epoxy resins used by repair materials are different from properties of the base concrete materials such as thermal and mechanical properties - thermal expansion coefficients, bending strength. And the epoxy resin cannot release the water inside the concrete structure and cause corrosion of the steel bars. In this study, before the experiment got launched, we had analyzed cement and slag. Then We blended the two grades of ultra fine cement using high blaine cement and slag. And the cement slurry was produced by water and suprplasticizer to each blended ultra fine cement in various conditions. The slurry produced by each conditions was evaluated with flow properties such as viscosity, dropping time, segregation and observation of dry surface after injection.

  • PDF

증기양생한 저시멘트 모르타르의 압축강도 특성 (Compressive Strength Properties of Steam-Cured Low Cement Mortar)

  • 윤승조;임건우;이건철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.295-296
    • /
    • 2023
  • This study evaluated the compressive strength after making mortar with low cement composition for carbon-neutral steam curing to respond to climate change. Blast furnace slag, fly ash, and ultra-high powder fly ash were used as substitutes for cement. The cement substitute was used at 40% of the mass of cement, and after steam curing, the compressive strength was measured on the 1st, 3rd, 7th and 28th days of age. As a result of the experiment, at the age of 1 day, the mixture using only cement showed the highest strength, but from the 3rd day, the specimen using ultra-high powder showed a high strength development rate, followed by blast furnace slag and fly ash.

  • PDF

Leaching Behavior of LD Slag

  • Kim, Hyung-Suek;Han, Ki-Hyun;M. S. Oh;Byeon, Tae-Bong
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.526-531
    • /
    • 2001
  • LD slag, that is, a by-product of steel making process, has been mainly used as land construction materials. Recently, the seashore application of LD slag was tried in Japan and Korea tut the reaction between LD slag and seawater was not studied yet. We tried to clarify the leaching reaction and/or mechanism of LD slag and the reaction between seawater and LD slag. We tried to apply these results to the decarbonization of seawater for seawater magnesia process. At first, LD slag was milled and classified into 5 grades, that is, (ⅰ)45${\mu}{\textrm}{m}$ under, (ⅱ)0.25~0.5mm (ⅲ)0.5~1mm(ⅳ)1~2mm, (ⅴ)2.36~3.35mm. These slags were leached in the distilled water. In case of 45${\mu}{\textrm}{m}$ under, the pH of the leached solution was over 12. The chemical analysis of leached solution showed that the $Ca^{+}$$^2$was main component and the S $i^{+}$$^4$was very low. On the other hand, the content of S $i^{+}$$^4$in leached solution was decreased with the increase of pH of this solution. The nearly pure calcium solution was made and the ultra high purity MgO could be made with this calcium solution. The leaching behavior of LD slag was different between the fine particle and coarse particle. The calcium was leached by bulk dissolution in the coarse particle and by surface controlled reaction in fine particle. The leaching rate was slow in coarse particle and fast in fine particle. Therefore, the high pH solution, that is, over 12, was obtained in fine particle.cle.e.

  • PDF

Experimental study on rheology, strength and durability properties of high strength self-compacting concrete

  • Bauchkar, Sunil D.;Chore, H.S.
    • Computers and Concrete
    • /
    • 제22권2호
    • /
    • pp.183-196
    • /
    • 2018
  • The rheological behaviour of high strength self compacting concrete (HS-SCC) studied through an experimental investigation is presented in this paper. The effect of variation in supplementary cementitious materials (SCM) $vis-{\grave{a}}-vis$ four different types of processed crushed sand as fine aggregates is studied. Apart from the ordinary Portland cement (OPC), the SCMs such as fly ash (FA), ground granulated blast furnace slag (GGBS) ultrafine slag (UFS) and micro-silica (MS) are used in different percentages keeping the mix -paste volume and flow of concrete, constant. The combinations of rheology, strength and durability are equally important for selection of mixes in respect of high-rise building constructions. These combinations are referred to as the rheo-strength and rheo-durability which is scientifically linked to performance based rating. The findings show that the fineness of the sands and types of SCM affects the rheo-strength and rheo-durability performance of HS-SCC. The high amount of fines often seen in fine aggregates contributes to the higher yield stress. Further, the mixes with processed sand is found to offer better rheology as compared to that of mixes made using unwashed crushed sand, washed plaster sand, washed fine natural sand. The micro silica and ultra-fine slag conjunction with washed crushed sand can be a good solution for high rise construction in terms of rheo-strength and rheo-durability performance.

전기로 산화 슬래그 잔골재 치환율 변화가 석회암 기반 초고강도 모르타르의 기초적 특성에 미치는 영향 (Influence of Various Replacement Ratio of Electric Arc Furnace Fine Aggregate on Fundamental Properties of Limestone Based High Strength Mortar)

  • 문병룡;송원루;이제현;김민상;한인덕;한민철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 춘계 학술논문 발표대회
    • /
    • pp.45-46
    • /
    • 2016
  • As the demand for super tall buildings is currently increased in domestic and foreign countries, some kinds of ultra-high strength concretes are being developed actively. Since the cross section of concrete becomes smaller thanks to such kinds of ultra-high strength concretes, the concrete structures can be much bigger, more gigantic and much ultra-high. And as another benefit which is generated thanks to the enhancement of the durability performance, the maintenance expenses are also saved. However, since low W/B ultra-high concrete has a high possibility that many cracks can occur in the initial period due to the self-shrinkage caused by the self-desiccation as one of the blending characteristics, the problem becomes bigger by influencing the safety of a structure. Therefore, in this study, it is intended to analyze the effects of substituting some limestone-based ultra-high strength mortar with electric arc furnace oxidizing slag fine aggregates on the self-shrinkage of mortar.

  • PDF