• 제목/요약/키워드: ultimate shear strength

검색결과 493건 처리시간 0.038초

강곡선 플레이트거더 복부판의 극한전단강도에 관한 실험연구 (Experimental Study on Ultimate Shear Strength of Horizontally Curved Plate Girder Web Panels)

  • 이두성;박찬식;이성철
    • 대한토목학회논문집
    • /
    • 제26권4A호
    • /
    • pp.727-734
    • /
    • 2006
  • 강곡선복부판의 전단설계에서 Guide Specifications(AASHTO, 2003)에서는 여전히 후좌굴강도를 반영하고 있지 않다. 그러나 최근 강곡선 복부판의 전단거동에 관한 해석 및 실험연구를 통해서 탄성좌굴 후에 직선교 복부판과 같이 후좌굴강도를 발현하고 있으며, 일반적인 설계범위에서 직선교 복부판과 유사한 크기의 극한전단강도를 나타내고 있는 것으로 조사되었다. 본 연구에서는 강곡선복부판의 극한전단강도를 조사하기 위하여 유한요소해석과 실험연구를 수행하였다. 연구결과를 통해서 일반적으로 설계가 수행되는 기하학적인 범위 내에서 강곡선복부판은 후좌굴강도를 발현하며, 그 크기는 동일한 재료를 적용한 직선복부판과 유사하다는 것을 알 수 있었다. 그러므로 강도한계상태에서 강곡선복부판도 Lee and Yoo(1998)가 제안한 직선복부판의 극한전단강도를 이용하여 설계할 수 있음을 본 연구를 통해서 제안하였다.

LMC로 보강된 철근콘크리트 보의 파괴거동 (Fracture Behavior of Reinforced Concrete Beams Repaired by Latex-Modified Concrete)

  • 김성환;정원경;김기헌;김동호;윤경구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.475-480
    • /
    • 2003
  • Latex modification of concrete provides the material with higher flexural strength. This increase in flexural strength can attribute to the crack-arresting action of polymer in concrete, and also to the bonding they provide between the matrix and aggregates. This experimental study presents the fracture behavior of 12 flexural reinforced concrete beams repaired or strengthened by latex-modified concrete with the main experimental variables such as overlay thickness, strength thickness, and shear reinforcement. The results are as follow: All beam specimens having shear reinforcement were failed by delamination rupture at concrete interface at about 80% of ultimate loading after flexural cracking. All specimens overlayed and strengthened by latex-modified concrete (LMC) showed higher ultimate flexural strength than OPC control specimen, but lower than LMC control specimen. This increase in flexural strength could attribute to the high bonding they provide between the matrix and aggregates. All specimens except two shear unreinforced showed quite similar and consistent displacement behavior. The effect of overlay and strength thickness on the load-displacement relationship were a small at this study.

  • PDF

단부 횡보강영역에 따른 전단벽 연성도의 변화 (Variations in Ductility of Shear Wall with Length of Boundary Confinement)

  • 강수민;오재은;박홍근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.853-858
    • /
    • 2001
  • Experimental studies were peformed to investigate variations in ductility of shear wall with length of boundary confinement. Eight specimens containg different lengths of confinment zone, which model compressive zone in plastic regions of shear walls, were tested against eccentric vetical load. Stress-strain model for confined concrete was used to predict strength and ductility of the specimens, which was compared to the test results. The results obtained show that failure of the compressive zone occurs in a brittle manner when the stress of unconfined zone softened after the ultimate strength were reached. To enhance the ductility of shear walls with concentrated confinement zone such as barbell-type walls, the ultimate strength of the confinement zone needs to be increased, and for shear walls with distributed confinement zone the length of the confinement zone needs to be extended.

  • PDF

강섬유를 혼입한 고강도 콘크리트 보의 전단강도 (Shear Strength of High Strength Concrete Beams with Steel Fibrous)

  • 곽계환;박종건;정태영
    • 콘크리트학회논문집
    • /
    • 제12권4호
    • /
    • pp.23-30
    • /
    • 2000
  • The purpose of this paper is to study on the shear strength of high strength concrete beams with steel fibrous. In general, the shear strength of reinforced concrete beams is affected by the compressive strengths of concrete( c), the shear span-depth ratio(a/d), the longitudinal steel ratio($\rho$ $\omega$), and shear reinforcement. An experimental investigation of the shear strength of high strength concrete beams with steel fibrous was conducted. In each series the shear span-depth ratio(a/d) was held constant at 1.5, 2.8, or 3.6, while concrete strengths were varied from 320 to 520, to 800kgf/$\textrm{cm}^2$. To verify the proposed equations the experimental results were compared with those from other researches such as equation of ACI code 318-95 or equation of Zsutty. To deduce equation for shear strength from experimental data carried out MINITAP program. According to the experimental results, the addition of steel fibrous has increased the deflection and strain at failure load, improving the brittleness of the high strength concrete.

단순지지 RC 깊은 보 부정정 스트럿-타이 모델의 하중분배율 - (II) 적합성 평가 (Load Distribution Ratios of Indeterminate Strut-Tie Models for Simply Supported RC Deep Beams - (II) Validity Evaluation)

  • 김병헌;정찬핵;윤영묵
    • 대한토목학회논문집
    • /
    • 제28권2A호
    • /
    • pp.269-279
    • /
    • 2008
  • 본 논문에서는 전편논문에서 제안한 부정정 스트럿-타이 모델 및 하중분배율 결정식을 ACI 318-05 스트럿-타이 모델 설계기준에 적용하여 파괴실험이 수행된 229개 단순지지 철근콘크리트 깊은 보의 극한강도를 평가하였다. 또한 229개 깊은 보의 극한강도를 실험식, 실험 전단강도모델에 기초한 설계기준, 이론 전단강도모델에 기초한 설계기준, 그리고 현 스트럿-타이 모델 설계기준 등으로 평가하고, 그 결과를 본 연구의 방법에 의한 결과와 비교분석하여 본 연구에서 제안한 방법의 적합성을 검증하였다.

Behavior of pre-cracked deep beams with composite materials repairs

  • Boumaaza, M.;Bezazi, A.;Bouchelaghem, H.;Benzennache, N.;Amziane, S.;Scarpa, F.
    • Structural Engineering and Mechanics
    • /
    • 제63권5호
    • /
    • pp.575-583
    • /
    • 2017
  • The study covers the behavior of reinforced concrete deep beams loaded under 4-point bending, failed by shear and repaired using bonding glass fiber reinforced plastics fabrics (GFRP) patches. Two rehabilitation methods have been used to highlight the influence of the composite on the ultimate strength of the beams and their failure modes. In the first series of trials the work has been focused on the reinforcement/rehabilitation of the beam by following the continuous configuration of the FRP fabric. The patch with a U-shape did not provide satisfactory results because this reinforcement strategy does not allow to increase the ultimate strength or to avoid the abrupt shear failure mode. A second methodology of rehabilitation/reinforcement has been developed in the form of SCR (Strips of Critical Region), in which the composite materials reinforcements are positioned to band the inclined cracks (shear) caused by the shear force. The results obtained by using this method lead a superior out come in terms of ultimate strength and change of the failure mode from abrupt shearing to ductile bending.

The bearing capacity of square footings on a sand layer overlying clay

  • Uncuoglu, Erdal
    • Geomechanics and Engineering
    • /
    • 제9권3호
    • /
    • pp.287-311
    • /
    • 2015
  • The ultimate bearing capacity and failure mechanism of square footings resting on a sand layer over clay soil have been investigated numerically by performing a series of three-dimensional non-linear finite element analyses. The parameters investigated are the thickness of upper sand layer, strength of sand, undrained shear strength of lower clay and surcharge effect. The results obtained from finite element analyses were compared with those from previous design methods based on limit equilibrium approach. The results proved that the parameters investigated had considerable effect on the ultimate bearing capacity and failure mechanism occurring. It was also shown that the thickness of upper sand layer, the undrained shear strength of lower clay and the strength of sand are the most important parameters affecting the type of failure will occur. The value of the ultimate bearing capacity could be significantly different depending on the limit equilibrium method used.

크기효과를 고려한 고강도 콘크리트 보의 전단강도 예측식 제안 (Prediction of Shear Strength in High-Strength Concrete Beams Considering Size Effect)

  • 배영훈;윤영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.878-883
    • /
    • 2003
  • To modify some problems of ACI shear provisions, ultimate shear strength equation considering size effect and arch action to compute shear strength in high-strength concrete beams without stirrups is presented in this research. Three basic equations, namely size reduction factor, rho factor, and arch action factor, are derived from crack band model of fracture mechanics, analysis of previous some shear equations for longitudinal reinforcement ratio, and concrete strut described as linear function in deep beams. Constants of basic equations are determined using statistical analysis of previous shear testing data. To verify proposed shear equation for each variable, namely d, , ρ, f/sub c/' and aid, about 250 experimental data are used and proposed shear equation is compared with ACI 318-99 code, CEB-FIP Model code, Kim & Park's equation and Zsutty's equation. While proposed shear equation is simpler than other shear equations, it is shown to be economical predictions and reasonable safety margin. Hence proposed shear strength equation is expected to be applied to practice shear design.

  • PDF

고강도 경량콘크리트를 사용한 철근콘크리트 T 형보의 전단성능 (A Study on Shear Capacity of High Strength Lightweight Reinforced Concrete T-Beams)

  • 김진수;김원호;박성무
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1993년도 가을 학술발표회 논문집
    • /
    • pp.220-225
    • /
    • 1993
  • This paper is an experimental study on shear capacity of the high strength lightweight reinforced concrete beams with shear-depth ratio between 1.5 and 2.5. Thirteen T & rectangular beams were tested to determine their diagonal cracking and ultimate shear capacity. The major variables are shear span-depth ratio (a/d=1.5, 2.0, 2.5), concrete compressive strength(f'c=210, 24., 270㎏/㎠) and tensile steel ratio( =0.6, 1.2%). Based on results obtained from experiment of high strength lightweight reinforced concrete Beam & normal concrete, the following conclusions were drawn. (1) The shear capacity of high-strength lightweight concrete is less 15% than that of normal concrete under same condition. (2) As the results of Comparing this experimental datas with other various formulas. It is regarded that ACI 318-89 shear strength formula related tensile strength is proper to design formula of shear strength of high-strength lightweight reinforced concrete using lightweight concrete.

  • PDF

Fuzzy modelling approach for shear strength prediction of RC deep beams

  • Mohammadhassani, Mohammad;Saleh, Aidi MD.;Suhatril, M;Safa, M.
    • Smart Structures and Systems
    • /
    • 제16권3호
    • /
    • pp.497-519
    • /
    • 2015
  • This study discusses the use of Adaptive-Network-Based-Fuzzy-Inference-System (ANFIS) in predicting the shear strength of reinforced-concrete deep beams. 139 experimental data have been collected from renowned publications on simply supported high strength concrete deep beams. The results show that the ANFIS has strong potential as a feasible tool for predicting the shear strength of deep beams within the range of the considered input parameters. ANFIS's results are highly accurate, precise and therefore, more satisfactory. Based on the Sensitivity analysis, the shear span to depth ratio (a/d) and concrete cylinder strength ($f_c^{\prime}$) have major influence on the shear strength prediction of deep beams. The parametric study confirms the increase in shear strength of deep beams with an equal increase in the concrete strength and decrease in the shear span to-depth-ratio.