• 제목/요약/키워드: u- 러닝

검색결과 306건 처리시간 0.026초

DEXA에서 딥러닝 기반의 척골 및 요골 자동 분할 모델 (Automated Ulna and Radius Segmentation model based on Deep Learning on DEXA)

  • 김영재;박성진;김경래;김광기
    • 한국멀티미디어학회논문지
    • /
    • 제21권12호
    • /
    • pp.1407-1416
    • /
    • 2018
  • The purpose of this study was to train a model for the ulna and radius bone segmentation based on Convolutional Neural Networks and to verify the segmentation model. The data consisted of 840 training data, 210 tuning data, and 200 verification data. The learning model for the ulna and radius bone bwas based on U-Net (19 convolutional and 8 maximum pooling) and trained with 8 batch sizes, 0.0001 learning rate, and 200 epochs. As a result, the average sensitivity of the training data was 0.998, the specificity was 0.972, the accuracy was 0.979, and the Dice's similarity coefficient was 0.968. In the validation data, the average sensitivity was 0.961, specificity was 0.978, accuracy was 0.972, and Dice's similarity coefficient was 0.961. The performance of deep convolutional neural network based models for the segmentation was good for ulna and radius bone.

유방 영상에서 딥러닝 기반의 유방 종괴 자동 분할 연구 (An Automatic Breast Mass Segmentation based on Deep Learning on Mammogram)

  • 권소윤;김영재;김광기
    • 한국멀티미디어학회논문지
    • /
    • 제21권12호
    • /
    • pp.1363-1369
    • /
    • 2018
  • Breast cancer is one of the most common cancers in women worldwide. In Korea, breast cancer is most common cancer in women followed by thyroid cancer. The purpose of this study is to evaluate the possibility of using deep - run model for segmentation of breast masses and to identify the best deep-run model for breast mass segmentation. In this study, data of patients with breast masses were collected at Asan Medical Center. We used 596 images of mammography and 596 images of gold standard. In the area of interest of the medical image, it was cut into a rectangular shape with a margin of about 10% up and down, and then converted into an 8-bit image by adjusting the window width and level. Also, the size of the image was resampled to $150{\times}150$. In Deconvolution net, the average accuracy is 91.78%. In U-net, the average accuracy is 90.09%. Deconvolution net showed slightly better performance than U-net in this study, so it is expected that deconvolution net will be better for breast mass segmentation. However, because of few cases, there are a few images that are not accurately segmented. Therefore, more research is needed with various training data.

YOLOv4를 이용한 차량파손 검출 모델 개선 (Improving the Vehicle Damage Detection Model using YOLOv4)

  • 전종원;이효섭;한희일
    • 전기전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.750-755
    • /
    • 2021
  • 본 논문에서는 YOLOv4를 이용하여 차량의 부위별 파손현황을 검출하는 기법을 제안한다. 제안 알고리즘은 YOLOv4를 통해 차량의 부위와 파손을 각각 학습시킨 후 검출되는 바운딩 박스의 좌표 정보들을 추출하여 파손과 차량부위의 포함관계를 판단하는 알고리즘을 적용시켜 부위별 파손현황을 도출한다. 또한 성능비교의 객관성을 위하여 동일분야의 VGGNet을 이용한 기법, 이미지 분할과 U-Net 모델을 이용한 기법, Weproove.AI 딥러닝 모델 등을 대조 모델로 포함한다. 이를 통하여 제안 알고리즘의 성능을 비교, 평가하고 검출 모델의 개선 방안을 제안한다.

승용자율주행을 위한 의미론적 분할 데이터셋 유효성 검증 (Validation of Semantic Segmentation Dataset for Autonomous Driving)

  • 곽석우;나호용;김경수;송은지;정세영;이계원;정지현;황성호
    • 드라이브 ㆍ 컨트롤
    • /
    • 제19권4호
    • /
    • pp.104-109
    • /
    • 2022
  • For autonomous driving research using AI, datasets collected from road environments play an important role. In other countries, various datasets such as CityScapes, A2D2, and BDD have already been released, but datasets suitable for the domestic road environment still need to be provided. This paper analyzed and verified the dataset reflecting the Korean driving environment. In order to verify the training dataset, the class imbalance was confirmed by comparing the number of pixels and instances of the dataset. A similar A2D2 dataset was trained with the same deep learning model, ConvNeXt, to compare and verify the constructed dataset. IoU was compared for the same class between two datasets with ConvNeXt and mIoU was compared. In this paper, it was confirmed that the collected dataset reflecting the driving environment of Korea is suitable for learning.

인공지능을 이용한 스마트 표적탐지 시스템 (Smart Target Detection System Using Artificial Intelligence)

  • 이성남
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.538-540
    • /
    • 2021
  • 본 논문에서는 드론의 표적탐지 임무 수행 시 상대운동 정보 제공을 위하여 지정된 표적을 탐지하고 인식하는 스마트 표적탐지 시스템을 제안하였다. 제안된 시스템은 적절한 정확도(i.e. mAP, IoU) 및 높은 실시간성을 동시에 확보할 수 있는 알고리즘을 개발하는데 중점을 두었다. 제안된 시스템은 Google Inception V2 딥러닝 모델의 100k 학습 후 test 결과가 1.0에 가까운 정확성을 보였고 실시간성도 Nvidia GTX 2070 Max-Q를 기반으로 한 고성능 노트북 활용 시에 추론 속도가 약 60-80[Hz]를 기록하였다. 제안된 스마트 표적탐지 시스템은 드론과 같이 운용되어 컴퓨터 영상처리를 활용하여 표적을 자동으로 인식하고 표적을 따라가면서 감시정찰 임무를 성공적으로 수행하는데 도움이 될 것이다.

  • PDF

Himawari-8 정지궤도 위성 영상을 활용한 딥러닝 기반 산불 탐지의 효율적 방안 제시 (Efficient Deep Learning Approaches for Active Fire Detection Using Himawari-8 Geostationary Satellite Images)

  • 이시현;강유진;성태준;임정호
    • 대한원격탐사학회지
    • /
    • 제39권5_3호
    • /
    • pp.979-995
    • /
    • 2023
  • 산불은 예측이 어려운 재해이기 때문에 실시간 모니터링을 통해 빠르게 대응하는 것이 중요하며, 정지 궤도 위성 영상은 광역을 짧은 시간 간격으로 모니터링할 수 있어 산불 탐지 분야에 활발히 이용되고 있다. 기존의 위성 영상 기반 산불 탐지 알고리즘은 밝기 온도의 통계량 분석을 통한 임계값 기반으로 이상치를 탐지하는 방향으로 진행되어 왔다. 그러나 강도가 약한 산불을 탐지하기 어렵거나, 적절한 임계값 설정의 어려움으로 일반화 성능이 저하되는 한계점이 있어 최근에는 기계학습을 이용한 산불 탐지 알고리즘들이 제시되고 있다. 현재까지는 random forest, VanillaConvolutional neural network (CNN), U-net 구조 등의 비교적 간단한 기법이 적용되고 있다. 따라서, 본 연구에서는 정지궤도 위성인 Advanced Himawari Imager를 이용하여 동아시아와 호주를 대상으로 State of the Art (SOTA)딥러닝 기법을 적용한 산불 탐지 알고리즘을 개발하고자 하였다. SOTA 모델은 EfficientNet과 lion optimizer를 적용하여 개발하고, Vanilla CNN 구조를 사용한 모델과 산불 탐지 결과를 비교하였다. EfficientNet은 동아시아와 호주에서 0.88 및 0.83의 F1-score를 기록함으로써 CNN (동아시아: 0.83, 호주: 0.78)에 비해 뛰어난 성능을 입증하였다. EfficientNet에 불균형 문제 해결을 위한 weighted loss, equal sampling, image augmentation 기법 적용 시, 동아시아와 호주에서 각각 0.92와 0.84의 F1-score를 기록함으로써 적용 전(동아시아: 0.88, 호주: 0.83)에 비하여 성능이 향상되었음을 확인하였다. 본 연구를 통하여 제시된 SOTA 딥러닝 기법의 산불 탐지에의 적용 가능성과 딥러닝 모델의 성능 향상을 위해 고려해야 할 방향은 향후 산불탐지 분야에 대한 딥러닝 적용에 도움이 될 것으로 기대된다.

SPADE 기반 U-Net을 이용한 고해상도 위성영상에서의 도시 변화탐지 (Urban Change Detection for High-resolution Satellite Images Using U-Net Based on SPADE)

  • 송창우;;정지훈;홍성재;김대희;강주형
    • 대한원격탐사학회지
    • /
    • 제36권6_2호
    • /
    • pp.1579-1590
    • /
    • 2020
  • 본 논문에서는 고해상도의 위성영상을 활용하여 도시의 변화 양상을 분석하기 위하여 SPADE기반의 U-Net과 객체 영역기반 변화탐지 방법을 제안한다. 제안하는 네트워크는 기존의 U-Net에서 공간 정보를 잃지 않기 위해 SPADE를 사용했다. 고해상도 위성영상을 활용한 변화탐지 방법은 계획, 예측 등 다양한 도시 문제를 해결하기 위해 활용할 수 있다. IR-MAD 등 전통적인 방법인 화소 기반의 변화탐지를 수행할 경우, 다중 시기 영상 간의 기후, 계절 변화 등에 의해 화소의 변화가 민감하기 때문에 미변화 지역들이 변화 지역으로 오탐지될 가능성이 매우 크다. 이에 본 논문에서는 시계열 위성영상에서 도시를 구성하는 객체에 대한 변위를 정확하게 탐지하기 위해 도시를 구성하는 주요 공간 객체를 정의하고, 딥러닝 기반 영상 분할을 통해 추출한 후 영역 간의 변위 오차를 분석하여 변화탐지를 수행한다. 변화 양상을 분석하기 위한 공간 객체로 건축물, 도로, 농경지, 비닐하우스, 산림 영역, 수변 영역의 6개로 정의하였다. KOMPSAT-3A 위성영상으로 학습한 각 네트워크 모델을 시계열 KOMPSAT-3 위성영상에 대한 변화탐지를 수행한다. 객관적인 성능 평가를 위한 변화탐지 지표는 F1-score, Kappa를 사용한다. 제안하는 변화탐지 기법은 U-Net, UNet++ 대비 뛰어난 결과를 보이며, 평균 F1 score는 0.77, kappa는 77.29의 성능을 확인할 수 있다.

군집분석을 이용한 새로운 IS 실무자 분류 체계에 관한 연구

  • 경원현;고석하
    • 한국정보기술응용학회:학술대회논문집
    • /
    • 한국정보기술응용학회 2006년도 춘계학술대회
    • /
    • pp.573-601
    • /
    • 2006
  • IS 실무자들은 과거처럼 단순한 시스템 분석이나 프로그래밍 기법만을 갖추는 것만으로는 조직이 원하는 정보기술을 효과적으로 운용하는 것이 어렵게 되고 있다. 예전과는 달리 최근의 기업에서는 통신 시스템을 포함하는 다양한 정보기술에 관련된 지식과 기술을 전문적으로 다룰 수 있는 전문가를 원하는 추세이다. 이러한 맥락에서 IS 실무자들이 자신의 업무를 성공적으로 수행하기 위해 필요한 전문 지식과 기술은 무엇인가라는 질문에 대한 대답을 알 수 있어야만 한다. 본 연구는 IS 실무자들이 그들이 직면하고 있는 ‘IS 지식과 기술의 빠른 변화’를 얼마만큼 인식하고 있으며, 그들이 필요로 하는 지식과 기술과 업무를 수행함에 있어 필수적인 지식과 기술을 얼마만 큼 보유하고 있는지를 조사하였다. 본 연구에서는 조사된 자료를 통하여, 기존의 국내외의 문화에서 밝혀진 인구 통계학적 분류기준 (예를 들자면, 경력 수준, 지역, 직종) 이외에 이들을 분류할 수 있는 기준에는 어떠한 것이 있는가에 대한 연구를 수행하였다. 분석을 위하여 실무자들이 현업에서 많은 시간과 노력을 들이고 있는 IS 활동영역에 대한 투자시간을 기준으로 실무자들을 분류하였다. 분석에서는 조사자의 군집분석과 다차원 분석을 통하여 분류된 실무자 그룹에 대한 여러 가지 기술적인 특성과, 인구 통계학적 특성을 파악하고, 그룹들에 대하여 새로운 분류에 적합한 표기를 제시하고자 하였다. 본 논문은 정보시스템 영역에서 수행된 IS 실무자들에 다양한 연구의 한 부분으로서, 기업 환경, 조직 환경, 나아가 실무자들의 직무환경의 개선에 필요한 지식과 기술을 제공할 것이다.아날로그 방식에서 IT 기반에 의한 디지털 환경으로 변화되고 있다. 또한 e러닝, T러닝, m러닝, u러닝 등의 용어가 생성되고 있다.키지에어컨에서 사용되고 있는 밀폐형 압축기에 대해서 그림 2에서 나타내고 있는 냉방능력 10tons(120,000Btu/h) 이하를 중심으로 상기의 최근 기술 동향을 간략하게 소개하고자 한다.질표준의 지표성분으로 간주되는 진세노사이드의 절대함량과 그 성분조성 차이에 따른 임상효과의 차별성이 있는지에 대한 검토와, 특히 최근 실험적으로 밝혀지고 있는 사포닌 성분의 장내 세균에 의한 생물전환체의 인체 실험을 통한 효과 검정이 필요하다. 나아가서는 적정 복용량의 설정과 이와 관련되는 생체내 동태 및 생체이용율(bioavilability)에 관한 정보가 거의 없으므로 이것도 금후 검토해야 할 과제로 사료된다. 인삼은 전통약물로서 오랜 역사성과 그동안의 연구결과에 의한 과학성을 가지고 있으므로 건강유지와 병의 예방 및 회복촉진을 위한 보조요법제 또는 기능성 식품으로써의 유용성이 있는 것으로 판단된다. 앞으로 인삼의 활용성 증대를 위해서는 보다 과학적인 임상평가에 의한 안전성 및 유효성 입증과 제품의 엄격한 품질관리의 필요성이 더욱 강조되어야 할 것이다.xyl radical 생성 억제 효과를 보여 주었다. 본 실험을 통하여 BHT 를 제외하고 전반적으로 세포 수준에서의 oxidative stress 에 대한 억제 효과를 확인해 볼 수 있었으며 특히 수용성 항산화제들에서 두드러진 효과를 보여 주었다. 제공하여 내수기반 확충에도 노력해야 할 것 이다.있었다., 인삼이 성장될 때 부분적인 영양상태의

  • PDF

Landsat 8 기반 SPARCS 데이터셋을 이용한 U-Net 구름탐지 (U-Net Cloud Detection for the SPARCS Cloud Dataset from Landsat 8 Images)

  • 강종구;김근아;정예민;김서연;윤유정;조수빈;이양원
    • 대한원격탐사학회지
    • /
    • 제37권5_1호
    • /
    • pp.1149-1161
    • /
    • 2021
  • 컴퓨터 비전 기술이 위성영상에 적용되면서, 최근 들어 딥러닝 영상인식을 이용한 구름 탐지가 관심을 끌고 있다. 본연구에서는 SPARCS (Spatial Procedures for Automated Removal of Cloud and Shadow) Cloud Dataset과 영상자료증대 기법을 활용하여 U-Net 구름탐지 모델링을 수행하고, 10폴드 교차검증을 통해 객관적인 정확도 평가를 수행하였다. 512×512 화소로 구성된 1800장의 학습자료에 대한 암맹평가 결과, Accuracy 0.821, Precision 0.847, Recall 0.821, F1-score 0.831, IoU (Intersection over Union) 0.723의 비교적 높은 정확도를 나타냈다. 그러나 구름그림자 중 14.5%, 구름 중 19.7% 정도가 땅으로 잘못 예측되기도 했는데, 이는 학습자료의 양과 질을 보다 더 향상시킴으로써 개선 가능할 것으로 보인다. 또한 최근 각광받고 있는 DeepLab V3+ 모델이나 NAS(Neural Architecture Search) 최적화 기법을 통해 차세대중형위성 1, 2, 4호 등의 구름탐지에 활용 가능할 것으로 기대한다.

데이터 확장을 통한 토지피복분류 U-Net 모델의 성능 개선 (The Performance Improvement of U-Net Model for Landcover Semantic Segmentation through Data Augmentation)

  • 백원경;이명진;정형섭
    • 대한원격탐사학회지
    • /
    • 제38권6_2호
    • /
    • pp.1663-1676
    • /
    • 2022
  • 최근 딥러닝을 활용한 토지피복분류 기법 연구가 다수 수행되고 있다. 그런데 양질의 토지피복 학습데이터를 충분하게 구축되지 못하여 성능이 저하되는 양상이 확인되었다. 이에 따라 본 연구에서는 데이터 확장 기법의 적용을 통한 토지피복분류 성능의 향상을 확인하였다. 분류 모델로는 U-Net이 활용되었으며 AI Hub에서 제공하는 토지피복 위성 이미지 자료를 연구자료로 활용하였다. 원본 데이터로 학습한 모델과 데이터 확장 기법이 적용된 데이터로 학습한 모델의 픽셀 정확도는 각각 0.905와 0.923이었으며 평균 F1 스코어는 각각 0.720과 0.775로 데이터 확장 기법을 적용하였을 때가 보다 우수한 성능을 나타내는 사실을 확인할 수 있었다. 또한 원본 학습데이터를 활용하여 학습한 모델의 경우 건물, 도로, 논, 밭, 산림, 비대상 지역 클래스에 대한 F1 스코어가 0.770, 0.568, 0.733, 0.455, 0.964 그리고 0.830이었으며, 데이터 확장을 적용하였을 때에 각 클래스에 대한 F1 스코어는 각각 0.838, 0.660, 0.791, 0.530, 0.969 그리고 0.860으로 모든 클래스에 대해 데이터 확장이 성능향상에 유효하다는 사실을 확인하였다. 또한, 클래스 균형에 대한 고려없이 데이터 확장을 적용했음에도 불구하고 데이터 불균형에 의한 클래스별 성능 왜곡을 완화할 수 있다는 사실을 확인할 수 있었다. 이는 절대적인 학습데이터의 양이 증가했기 때문이라 판단된다. 본 연구 결과는 다양한 영상 처리 분야에서 데이터 확장 기법의 중요성과 효과를 증명하는 기반 자료의 역할을 수행할 것으로 기대한다.