The purpose of this study was to train a model for the ulna and radius bone segmentation based on Convolutional Neural Networks and to verify the segmentation model. The data consisted of 840 training data, 210 tuning data, and 200 verification data. The learning model for the ulna and radius bone bwas based on U-Net (19 convolutional and 8 maximum pooling) and trained with 8 batch sizes, 0.0001 learning rate, and 200 epochs. As a result, the average sensitivity of the training data was 0.998, the specificity was 0.972, the accuracy was 0.979, and the Dice's similarity coefficient was 0.968. In the validation data, the average sensitivity was 0.961, specificity was 0.978, accuracy was 0.972, and Dice's similarity coefficient was 0.961. The performance of deep convolutional neural network based models for the segmentation was good for ulna and radius bone.
Breast cancer is one of the most common cancers in women worldwide. In Korea, breast cancer is most common cancer in women followed by thyroid cancer. The purpose of this study is to evaluate the possibility of using deep - run model for segmentation of breast masses and to identify the best deep-run model for breast mass segmentation. In this study, data of patients with breast masses were collected at Asan Medical Center. We used 596 images of mammography and 596 images of gold standard. In the area of interest of the medical image, it was cut into a rectangular shape with a margin of about 10% up and down, and then converted into an 8-bit image by adjusting the window width and level. Also, the size of the image was resampled to $150{\times}150$. In Deconvolution net, the average accuracy is 91.78%. In U-net, the average accuracy is 90.09%. Deconvolution net showed slightly better performance than U-net in this study, so it is expected that deconvolution net will be better for breast mass segmentation. However, because of few cases, there are a few images that are not accurately segmented. Therefore, more research is needed with various training data.
본 논문에서는 YOLOv4를 이용하여 차량의 부위별 파손현황을 검출하는 기법을 제안한다. 제안 알고리즘은 YOLOv4를 통해 차량의 부위와 파손을 각각 학습시킨 후 검출되는 바운딩 박스의 좌표 정보들을 추출하여 파손과 차량부위의 포함관계를 판단하는 알고리즘을 적용시켜 부위별 파손현황을 도출한다. 또한 성능비교의 객관성을 위하여 동일분야의 VGGNet을 이용한 기법, 이미지 분할과 U-Net 모델을 이용한 기법, Weproove.AI 딥러닝 모델 등을 대조 모델로 포함한다. 이를 통하여 제안 알고리즘의 성능을 비교, 평가하고 검출 모델의 개선 방안을 제안한다.
For autonomous driving research using AI, datasets collected from road environments play an important role. In other countries, various datasets such as CityScapes, A2D2, and BDD have already been released, but datasets suitable for the domestic road environment still need to be provided. This paper analyzed and verified the dataset reflecting the Korean driving environment. In order to verify the training dataset, the class imbalance was confirmed by comparing the number of pixels and instances of the dataset. A similar A2D2 dataset was trained with the same deep learning model, ConvNeXt, to compare and verify the constructed dataset. IoU was compared for the same class between two datasets with ConvNeXt and mIoU was compared. In this paper, it was confirmed that the collected dataset reflecting the driving environment of Korea is suitable for learning.
본 논문에서는 드론의 표적탐지 임무 수행 시 상대운동 정보 제공을 위하여 지정된 표적을 탐지하고 인식하는 스마트 표적탐지 시스템을 제안하였다. 제안된 시스템은 적절한 정확도(i.e. mAP, IoU) 및 높은 실시간성을 동시에 확보할 수 있는 알고리즘을 개발하는데 중점을 두었다. 제안된 시스템은 Google Inception V2 딥러닝 모델의 100k 학습 후 test 결과가 1.0에 가까운 정확성을 보였고 실시간성도 Nvidia GTX 2070 Max-Q를 기반으로 한 고성능 노트북 활용 시에 추론 속도가 약 60-80[Hz]를 기록하였다. 제안된 스마트 표적탐지 시스템은 드론과 같이 운용되어 컴퓨터 영상처리를 활용하여 표적을 자동으로 인식하고 표적을 따라가면서 감시정찰 임무를 성공적으로 수행하는데 도움이 될 것이다.
산불은 예측이 어려운 재해이기 때문에 실시간 모니터링을 통해 빠르게 대응하는 것이 중요하며, 정지 궤도 위성 영상은 광역을 짧은 시간 간격으로 모니터링할 수 있어 산불 탐지 분야에 활발히 이용되고 있다. 기존의 위성 영상 기반 산불 탐지 알고리즘은 밝기 온도의 통계량 분석을 통한 임계값 기반으로 이상치를 탐지하는 방향으로 진행되어 왔다. 그러나 강도가 약한 산불을 탐지하기 어렵거나, 적절한 임계값 설정의 어려움으로 일반화 성능이 저하되는 한계점이 있어 최근에는 기계학습을 이용한 산불 탐지 알고리즘들이 제시되고 있다. 현재까지는 random forest, VanillaConvolutional neural network (CNN), U-net 구조 등의 비교적 간단한 기법이 적용되고 있다. 따라서, 본 연구에서는 정지궤도 위성인 Advanced Himawari Imager를 이용하여 동아시아와 호주를 대상으로 State of the Art (SOTA)딥러닝 기법을 적용한 산불 탐지 알고리즘을 개발하고자 하였다. SOTA 모델은 EfficientNet과 lion optimizer를 적용하여 개발하고, Vanilla CNN 구조를 사용한 모델과 산불 탐지 결과를 비교하였다. EfficientNet은 동아시아와 호주에서 0.88 및 0.83의 F1-score를 기록함으로써 CNN (동아시아: 0.83, 호주: 0.78)에 비해 뛰어난 성능을 입증하였다. EfficientNet에 불균형 문제 해결을 위한 weighted loss, equal sampling, image augmentation 기법 적용 시, 동아시아와 호주에서 각각 0.92와 0.84의 F1-score를 기록함으로써 적용 전(동아시아: 0.88, 호주: 0.83)에 비하여 성능이 향상되었음을 확인하였다. 본 연구를 통하여 제시된 SOTA 딥러닝 기법의 산불 탐지에의 적용 가능성과 딥러닝 모델의 성능 향상을 위해 고려해야 할 방향은 향후 산불탐지 분야에 대한 딥러닝 적용에 도움이 될 것으로 기대된다.
본 논문에서는 고해상도의 위성영상을 활용하여 도시의 변화 양상을 분석하기 위하여 SPADE기반의 U-Net과 객체 영역기반 변화탐지 방법을 제안한다. 제안하는 네트워크는 기존의 U-Net에서 공간 정보를 잃지 않기 위해 SPADE를 사용했다. 고해상도 위성영상을 활용한 변화탐지 방법은 계획, 예측 등 다양한 도시 문제를 해결하기 위해 활용할 수 있다. IR-MAD 등 전통적인 방법인 화소 기반의 변화탐지를 수행할 경우, 다중 시기 영상 간의 기후, 계절 변화 등에 의해 화소의 변화가 민감하기 때문에 미변화 지역들이 변화 지역으로 오탐지될 가능성이 매우 크다. 이에 본 논문에서는 시계열 위성영상에서 도시를 구성하는 객체에 대한 변위를 정확하게 탐지하기 위해 도시를 구성하는 주요 공간 객체를 정의하고, 딥러닝 기반 영상 분할을 통해 추출한 후 영역 간의 변위 오차를 분석하여 변화탐지를 수행한다. 변화 양상을 분석하기 위한 공간 객체로 건축물, 도로, 농경지, 비닐하우스, 산림 영역, 수변 영역의 6개로 정의하였다. KOMPSAT-3A 위성영상으로 학습한 각 네트워크 모델을 시계열 KOMPSAT-3 위성영상에 대한 변화탐지를 수행한다. 객관적인 성능 평가를 위한 변화탐지 지표는 F1-score, Kappa를 사용한다. 제안하는 변화탐지 기법은 U-Net, UNet++ 대비 뛰어난 결과를 보이며, 평균 F1 score는 0.77, kappa는 77.29의 성능을 확인할 수 있다.
IS 실무자들은 과거처럼 단순한 시스템 분석이나 프로그래밍 기법만을 갖추는 것만으로는 조직이 원하는 정보기술을 효과적으로 운용하는 것이 어렵게 되고 있다. 예전과는 달리 최근의 기업에서는 통신 시스템을 포함하는 다양한 정보기술에 관련된 지식과 기술을 전문적으로 다룰 수 있는 전문가를 원하는 추세이다. 이러한 맥락에서 IS 실무자들이 자신의 업무를 성공적으로 수행하기 위해 필요한 전문 지식과 기술은 무엇인가라는 질문에 대한 대답을 알 수 있어야만 한다. 본 연구는 IS 실무자들이 그들이 직면하고 있는 ‘IS 지식과 기술의 빠른 변화’를 얼마만큼 인식하고 있으며, 그들이 필요로 하는 지식과 기술과 업무를 수행함에 있어 필수적인 지식과 기술을 얼마만 큼 보유하고 있는지를 조사하였다. 본 연구에서는 조사된 자료를 통하여, 기존의 국내외의 문화에서 밝혀진 인구 통계학적 분류기준 (예를 들자면, 경력 수준, 지역, 직종) 이외에 이들을 분류할 수 있는 기준에는 어떠한 것이 있는가에 대한 연구를 수행하였다. 분석을 위하여 실무자들이 현업에서 많은 시간과 노력을 들이고 있는 IS 활동영역에 대한 투자시간을 기준으로 실무자들을 분류하였다. 분석에서는 조사자의 군집분석과 다차원 분석을 통하여 분류된 실무자 그룹에 대한 여러 가지 기술적인 특성과, 인구 통계학적 특성을 파악하고, 그룹들에 대하여 새로운 분류에 적합한 표기를 제시하고자 하였다. 본 논문은 정보시스템 영역에서 수행된 IS 실무자들에 다양한 연구의 한 부분으로서, 기업 환경, 조직 환경, 나아가 실무자들의 직무환경의 개선에 필요한 지식과 기술을 제공할 것이다.아날로그 방식에서 IT 기반에 의한 디지털 환경으로 변화되고 있다. 또한 e러닝, T러닝, m러닝, u러닝 등의 용어가 생성되고 있다.키지에어컨에서 사용되고 있는 밀폐형 압축기에 대해서 그림 2에서 나타내고 있는 냉방능력 10tons(120,000Btu/h) 이하를 중심으로 상기의 최근 기술 동향을 간략하게 소개하고자 한다.질표준의 지표성분으로 간주되는 진세노사이드의 절대함량과 그 성분조성 차이에 따른 임상효과의 차별성이 있는지에 대한 검토와, 특히 최근 실험적으로 밝혀지고 있는 사포닌 성분의 장내 세균에 의한 생물전환체의 인체 실험을 통한 효과 검정이 필요하다. 나아가서는 적정 복용량의 설정과 이와 관련되는 생체내 동태 및 생체이용율(bioavilability)에 관한 정보가 거의 없으므로 이것도 금후 검토해야 할 과제로 사료된다. 인삼은 전통약물로서 오랜 역사성과 그동안의 연구결과에 의한 과학성을 가지고 있으므로 건강유지와 병의 예방 및 회복촉진을 위한 보조요법제 또는 기능성 식품으로써의 유용성이 있는 것으로 판단된다. 앞으로 인삼의 활용성 증대를 위해서는 보다 과학적인 임상평가에 의한 안전성 및 유효성 입증과 제품의 엄격한 품질관리의 필요성이 더욱 강조되어야 할 것이다.xyl radical 생성 억제 효과를 보여 주었다. 본 실험을 통하여 BHT 를 제외하고 전반적으로 세포 수준에서의 oxidative stress 에 대한 억제 효과를 확인해 볼 수 있었으며 특히 수용성 항산화제들에서 두드러진 효과를 보여 주었다. 제공하여 내수기반 확충에도 노력해야 할 것 이다.있었다., 인삼이 성장될 때 부분적인 영양상태의
컴퓨터 비전 기술이 위성영상에 적용되면서, 최근 들어 딥러닝 영상인식을 이용한 구름 탐지가 관심을 끌고 있다. 본연구에서는 SPARCS (Spatial Procedures for Automated Removal of Cloud and Shadow) Cloud Dataset과 영상자료증대 기법을 활용하여 U-Net 구름탐지 모델링을 수행하고, 10폴드 교차검증을 통해 객관적인 정확도 평가를 수행하였다. 512×512 화소로 구성된 1800장의 학습자료에 대한 암맹평가 결과, Accuracy 0.821, Precision 0.847, Recall 0.821, F1-score 0.831, IoU (Intersection over Union) 0.723의 비교적 높은 정확도를 나타냈다. 그러나 구름그림자 중 14.5%, 구름 중 19.7% 정도가 땅으로 잘못 예측되기도 했는데, 이는 학습자료의 양과 질을 보다 더 향상시킴으로써 개선 가능할 것으로 보인다. 또한 최근 각광받고 있는 DeepLab V3+ 모델이나 NAS(Neural Architecture Search) 최적화 기법을 통해 차세대중형위성 1, 2, 4호 등의 구름탐지에 활용 가능할 것으로 기대한다.
최근 딥러닝을 활용한 토지피복분류 기법 연구가 다수 수행되고 있다. 그런데 양질의 토지피복 학습데이터를 충분하게 구축되지 못하여 성능이 저하되는 양상이 확인되었다. 이에 따라 본 연구에서는 데이터 확장 기법의 적용을 통한 토지피복분류 성능의 향상을 확인하였다. 분류 모델로는 U-Net이 활용되었으며 AI Hub에서 제공하는 토지피복 위성 이미지 자료를 연구자료로 활용하였다. 원본 데이터로 학습한 모델과 데이터 확장 기법이 적용된 데이터로 학습한 모델의 픽셀 정확도는 각각 0.905와 0.923이었으며 평균 F1 스코어는 각각 0.720과 0.775로 데이터 확장 기법을 적용하였을 때가 보다 우수한 성능을 나타내는 사실을 확인할 수 있었다. 또한 원본 학습데이터를 활용하여 학습한 모델의 경우 건물, 도로, 논, 밭, 산림, 비대상 지역 클래스에 대한 F1 스코어가 0.770, 0.568, 0.733, 0.455, 0.964 그리고 0.830이었으며, 데이터 확장을 적용하였을 때에 각 클래스에 대한 F1 스코어는 각각 0.838, 0.660, 0.791, 0.530, 0.969 그리고 0.860으로 모든 클래스에 대해 데이터 확장이 성능향상에 유효하다는 사실을 확인하였다. 또한, 클래스 균형에 대한 고려없이 데이터 확장을 적용했음에도 불구하고 데이터 불균형에 의한 클래스별 성능 왜곡을 완화할 수 있다는 사실을 확인할 수 있었다. 이는 절대적인 학습데이터의 양이 증가했기 때문이라 판단된다. 본 연구 결과는 다양한 영상 처리 분야에서 데이터 확장 기법의 중요성과 효과를 증명하는 기반 자료의 역할을 수행할 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.