• 제목/요약/키워드: tyrosinase protein expression

검색결과 223건 처리시간 0.019초

Effects of N-acetylphytosphingosine on melanogenesis of B16F10 murine melanoma cells.

  • Park, M. K.;Park, C. S.;Kim, J. W.;R. M. Ahn;Y. S. Yoo;S. Y. Yi
    • 대한화장품학회:학술대회논문집
    • /
    • 대한화장품학회 2003년도 IFSCC Conference Proceeding Book II
    • /
    • pp.241-242
    • /
    • 2003
  • The effects of N-acetylphytospingosine(NAPS), one of the phytospingosine derivatives, on melanogenesis of B 16F 1 0 mouse melanoma cell lines were investigated. We assessed the effect of NAPS on the depigmentation of B16F10 cells. The melanin content of cells was significantly reduced by NAPS. We examined the inhibitory effect of NAPS on tyrosinase activity using L-dopa as a substrate and the results showed that tyrosinase activity was inhibited in a does-dependent manner. The mRNA level of tyrosinase as well as that of tyrosinase related protein-l (TRP-l) and tyrosinase related protein-2 (TRP-2) genes were not affected by NAPS based on a reverse transcription-polymerase chain reaction (RT-PCR) assay. We also performed a Western blotting analysis using anti-tyrosinase antibody. It showed that there is no change in tyrosinase protein level after treatment of NAPS. These results suggest that the depigmenting mechanism of NAPS in B16F10 melanoma cells involves inhibition of melanosomal tyrosinase activity, rather than the mRNA expression or protein level of tyrosinase.

  • PDF

니겔라 사티바 오일의 미백 효능에 관한 연구 (Effect of Nigella sativa Oil on Melanogenesis)

  • 이수연;이새미;허우범;김진국;김영희
    • 대한화장품학회지
    • /
    • 제37권4호
    • /
    • pp.319-326
    • /
    • 2011
  • 니겔라 사티바(Nigella sativa Linn.) 오일의 미백 효능을 확인하기 위하여 니겔라 사티바 오일 및 오일에서 분리된 유효성분들을 버섯 타이로시네이즈 효소, B16 멜라노마 세포를 이용하여 멜라닌 생성에 관련된 다양한 실험을 실시하였다. B16-F10 멜라노마 세포를 이용한 멜라닌 저해 활성시험 결과에서 니겔라 사티바 오일은 10 mg/mL의 농도에서 약 86 %의 멜라닌 생성을 억제하였으며, RT-PCR과 Western blot을 통한 멜라닌 생성 기작에 대한 영향을 조사한결과, 멜라닌 합성의 주요 단백질인 타이로시네이즈 발현 저해효과가 우수하게 나타났다. 또한, tyrosinase related protein-1 (TRP-1) 및 tyrosinase related protein-2 (TRP-2)의 발현이 억제되는 것을 확인하였다. 따라서, 니겔라 사티바오일은 멜라닌 생합성 저해 효과뿐만 아니라, 멜라닌 합성에 필수적인 효소(타이로시네이즈, TRP-1, TRP-2)의 발현저해를 통해 미백 효과를 나타내는 것으로 확인되었으며, 이에 따라 니겔라 사티바 오일은 멜라닌 생합성을 저해하는미백 소재로 활용할 수 있을 것으로 사료된다.

Anti-Melanogenic Effect of Oenothera laciniata Methanol Extract in Melan-a Cells

  • Kim, Su Eun;Lee, Chae Myoung;Kim, Young Chul
    • Toxicological Research
    • /
    • 제33권1호
    • /
    • pp.55-62
    • /
    • 2017
  • We evaluated the antioxidant activity and anti-melanogenic effects of Oenothera laciniata methanol extract (OLME) in vitro by using melan-a cells. The total polyphenol and flavonoid content of OLME was 66.3 and 19.0 mg/g, respectively. The electron-donating ability, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical-scavenging activity, and superoxide dismutase (SOD)-like activity of OLME ($500{\mu}g/mL$) were 94.5%, 95.6%, and 63.6%, respectively. OLME and arbutin treatment at $50{\mu}g/mL$ significantly decreased melanin content by 35.5% and 14.2%, respectively, compared to control (p < 0.05). OLME and arbutin treatment at $50{\mu}g/mL$ significantly inhibited intra-cellular tyrosinase activity by 22.6% and 12.6%, respectively, compared to control (p < 0.05). OLME ($50{\mu}g/mL$) significantly decreased tyrosinase, tyrosinase-related protein-1 (TRP-1), TRP-2, and microphthalmia-associated transcription factor-M (MITF-M) mRNA expression by 57.1%, 67.3%, 99.0%, and 77.0%, respectively, compared to control (p < 0.05). Arbutin ($50{\mu}g/mL$) significantly decreased tyrosinase, TRP-1, and TRP-2 mRNA expression by 24.2%, 42.9%, and 48.5%, respectively, compared to control (p < 0.05). However, arbutin ($50{\mu}g/mL$) did not affect MITF-M mRNA expression. Taken together, OLME showed a good antioxidant activity and anti-melanogenic effect in melan-a cells that was superior to that of arbutin, a well-known skin-whitening agent. The potential mechanism underlying the anti-melanogenic effect of OLME was inhibition of tyrosinase activity and down-regulation of tyrosinase, TRP-1, TRP-2, and MITF-M mRNA expression.

Inhibitory Effects of Water-soluble Extracts of Barley, Malt, and Germinated Barley on Melanogenesis in Melan-a Cells

  • Lee, Hyun Myung;Lee, Sung Ok;Moon, Eunjung;Do, Moon Ho;Kim, Sun Yeou
    • Natural Product Sciences
    • /
    • 제20권1호
    • /
    • pp.33-38
    • /
    • 2014
  • In recent times, the demand for edible medication for the treatment of hyperpigmentation has increased significantly. Therefore, the discovery of a stable, safe and inexpansive antimelanogenic component from natural substances, such as grains, is of particular interest. The levels and activities of some metabolites and/or enzymes can be increased. In the present study, we investigated the antimelanogenic effects of water-soluble extracts from barley (BE), malt (ME) and germinated barley (GBE) in melan-a cells. The inhibitory effects of ME and GBE on melanin production were significantly greater than that of BE. Interestingly, the content of ferulic acid, the proposed active component of barley, was also higher in ME and GBE than in BE by HPLC analysis. Western blot analysis of the expression of melanogenic enzymes in melan-a cells treated with BE, ME or GBE indicated the expression of both tyrosinase and tyrosinase-related protein 2 (TRP-2) significantly decreased after treatment with BE, ME or GBE. These results suggest that besides BE, ME and GBE also inhibit melanin production most likely through suppression of tyrosinase and TRP-2 expression. ME and GBE were more efficacious at inhibiting melanin production than BE was and may also represent potential skin-whitening agents.

Inhibitory Effect of Prunus persica Flesh Extract (PPFE) on Melanogenesis through the Microphthalmia-associated Transcription Factor (MITF)-mediated Pathway

  • Park, Hyen-Joo;Park, Kwang-Kyun;Hwang, Jae-Kwan;Chung, Won-Yoon;Lee, Sang-Kook
    • Natural Product Sciences
    • /
    • 제17권1호
    • /
    • pp.26-32
    • /
    • 2011
  • Novel tyrosinase inhibitors are important for pigmentation in the skin. Following extraction of tyrosinase inhibitors from edible vegetables or fruits, we found that the Prunus persica flesh extract (PPFE) exhibited potential inhibitory activity for melanogenesis. PPFE showed tyrosinase inhibitory activity in an enzymatic assay and PPFE also significantly inhibited the melanin formation in cultured mouse melan-a cells. Moreover, real-time RT-PCR analysis revealed that the inhibition of melanin production by PPFE was closely related to marked suppression of mRNA expression of tyrosinase and tyrosinase-related protein-1 and -2 (TRP-1 and TRP-2) in melan-a cells. Further investigation found that the modulation of tyrosinase expression by PPFE was associated with the transcriptional regulation of the microphthalmia-associated transcription factor (MITF). PPFE inhibited the promoter activity of MITF and suppressed MITF mRNA expression in melan-a cells. These results indicate that PPFE down-regulates melanogenesis-associated gene expression through MITF-mediated transcriptional regulation and these events might be related to the hypopigmentary effects of PPFE.

짚신나물 물 추출물의 항산화 활성 및 미백효과에 관한 연구 (Antioxidant and Whitening Effects of Agrimonia pilosa Ledeb Water Extract)

  • 김태혁;김정미;백종미;김태우;김대중;박정해;최면
    • 한국약용작물학회지
    • /
    • 제19권3호
    • /
    • pp.177-184
    • /
    • 2011
  • This study was performed to assess the antioxidant activities and whitening effects of Agrimonia pilosa Ledeb on melanin synthesis. The whitening effects of Agrimonia pilosa Ledeb water extracts were examined by in vitro mushroom tyrosinase assay and B16BL6 melanoma cells. We assessed inhibitory effect of Agrimonia pilosa Ledeb water extract on expression of melanogenic enzyme proteins including tyrosinase, tyrosinase-related protein 1 (TRP-1) and tyrosinase-related protein 2 (TRP-2) in B16BL6 cells. Inhibitory effect of Agrimonia pilosa Ledeb onto free radical generation was determined by measuring DPPH and hydroxyl radical scavenging activitie. Our results indicated that Agrimonia pilosa Ledeb water extract effectively inhibited free radical generation. In DPPH and hydroxy radical scavenging activity, Agrimonia pilosa Ledeb water extract had a potent anti-oxidant activity in a dose-dependent manner. They significantly inhibited tyrosinase activity in vitro and in B16BL6 melanoma cells. Also, Agrimonia pilosa Ledeb suppressed the expression of tyrosinase in B16BL6 melanoma cells. These results show that Agrimonia pilosa Ledeb inhibited melanin production on the melanogenesis. The underlying mechanism of Agrimonia pilosa Ledeb on whitening activity may be due to the inhibition of tyrosinase activity. We suggest that Agrimonia pilosa Ledeb may be useful as new natural active ingredients for antioxidant and whitening cosmetics.

Whitening Effect of Watersoluble Royal Jelly from South Korea

  • Han, Sang Mi;Kim, Jung Min;Hong, In Phyo;Woo, Soon Ok;Kim, Se Gun;Jang, Hye Ri;Park, Kwan Kyu;Pak, Sok Cheon
    • 한국축산식품학회지
    • /
    • 제35권5호
    • /
    • pp.707-713
    • /
    • 2015
  • Royal jelly has been widely used as a health supplement worldwide. However, royal jelly has been implicated in allergic reactions, and we developed a water-soluble royal jelly (WSRJ) without the allergy inducing protein. In this study, we aimed to identify the anti-melanogenic efficacy of WSRJ. B16F1 melanoma cells were first treated with 10 nM α-melanocyte stimulating hormone (α-MSH) and then with various doses of WSRJ. In addition, we investigated the mRNA and protein expression of melanogenesis-related genes such as tyrosinase, tyrosinase related protein-1 (TRP-1) and TRP-2 by reverse transcription-polymerase chain reaction and western blotting. WSRJ directly inhibited tyrosinase and cellular tyrosinase activity, which decreased melanin synthesis in α-MSH stimulated B16F1 melanoma cells a level comparable to that observed with arbutin. WSRJ decreased the mRNA and protein expressions of tyrosinase, TRP-1, and TRP-2, which was comparable to that observed with arbutin. WSRJ has strong anti-melanogenic activity, which invoice direct inhibition of tyrosinase enzyme activity and suppression of expression of melanogenesis related genes. Results from this study suggests that WSRJ is a potential candidate for the treatment of skin pigmentation.

참당귀로부터 분리한 Demethylsuberosin의 멜라닌 생성 억제 효과 (Inhibitory Effects on Melanin Production of Demethylsuberosin Isolated from Angelica gigas Nakai)

  • 김유아;박성하;김보윤;김아현;박병준;김진준
    • 생약학회지
    • /
    • 제45권3호
    • /
    • pp.209-213
    • /
    • 2014
  • The anti-melanogenic substance was isolated from the root of Angelica gigas Nakai by silica gel column chromatography, preparative HPLC and TLC. As a result of the structure analysis by mass, $^1H$-NMR, and $^{13}C$-NMR spectrometry, the compound was identified as demethylsuberosin. Demethylsuberosin reduced melanin contents of B16F1 melanoma cells in a dose-dependent manner and decreased to about 74% at a concentration $5{\mu}g/ml$. Demethylsuberosin inhibited the expression in microphthalmia associated transcription factor (MITF), tyrosinase, tyrosinase related protein-1 (TRP-1), and tyrosinase related protein-2 (TRP-2) in melanocytes. These results suggest that the whitening activity of demethylsuberosin may be due to the inhibition of the melanin synthesis by down-regulation of MITF, tyrosinase, TRP-1 and TRP-2 expression. Thus, our results provide evidence that demethylsuberosin might be useful as a potential skin-whitening agent.

Anti-Melanogenic Activities of Ranunculus chinensis Bunge via ERK1/2-Mediated MITF Downregulation

  • Min-Jin Kim;Yong Tae Jeong;Buyng Su Hwang;Yong Hwang;Dae Won Jeong;Yeong Taek Oh
    • 한국자원식물학회지
    • /
    • 제35권6호
    • /
    • pp.704-712
    • /
    • 2022
  • Research on whitening materials using natural alternatives is actively being conducted. The aim of this study was to investigate the in vitro inhibitory effects of Ranunculus chinensis Bunge (RCB) on melanogenesis and associated enzymes, such as tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 in B16F10 murine melanoma cells. We found that RCB extract significantly attenuated melanin synthesis and reduced the activity of intracellular tyrosinase, a rate-limiting melanogenic enzyme. Western blot analysis showed that RCB extract decreased the protein expression of tyrosinase and TRP-1. In addition, it significantly decreased the expression of microphthalmia-associated transcription factor (MITF), a key regulator of melanogenesis. Extracellular signal-regulated kinase (ERK) activation has been reported to be involved in the inhibition of melanogenesis. Thus, we investigated whether the hypopigmentary effects of RCB extract were related to the activation of ERK. RCB extract induced ERK phosphorylation in a dose-dependent manner. Furthermore, it markedly inhibited body pigmentation in a zebrafish model. Our results suggest that RCB extract inhibits melanogenesis by activating ERK pathway-mediated suppression of MITF and its downstream target genes, including tyrosinase. Therefore, RCB extract can be used as a whitening agent in the development of functional cosmetics.

복분자가 B16 세포주의 Tyrosinase, TRP-1 and TRP-2 발현에 미치는 영향 (Effects of Rubus coreanus Miquel on the Expressions of Tyrosinase, TRP-1 and TRP-2 in B16 Melanoma Cells)

  • 오세미;문연자;우원홍
    • 동의생리병리학회지
    • /
    • 제21권6호
    • /
    • pp.1456-1461
    • /
    • 2007
  • Melanogenesis is induced mainly by ultraviolet radiation of sunlight and ${\alpha}-melanocyte$-stimulating hormone (${\alpha}-MSH$) which binds to a specific G protein coupled receptor. The purpose of this study was to investigate the mechanism of melanogenesis inhibition in B16/F10 cells by methanol extract of Rubus coreanus Miquel (RCM). In the present study, ${\alpha}-MSH$ and forskolin led to a stimulation of melanin synthesis that appeared to result from an increased tyrosinase activity and melanin content. However, RCM inhibited the ${\alpha}-MSH$- and forskolin-induced melanin synthesis. In addition, RCM abolished the ${\alpha}-MSH$- and forskolin-induced cytoplasmic dendricity. Regarding protein levels of the melanogenic enzymes, the amounts of tyrosinase and tyrosinase-related protein 1 (TRP-1) were increased after incubation with α-MSH and forskolin. The treatment of RCM decreased the ${\alpha}-MSH$- and forskolin-induced expression levels of tyrosinase and TRP-1. Based on these findings, it is likely that RCM exerts its depigmenting effects in B16/F10 cells through the suppression of tyrosinase and TRP-1 expression, which are key enzymes for melanogenesis.