Browse > Article
http://dx.doi.org/10.7732/kjpr.2022.35.6.704

Anti-Melanogenic Activities of Ranunculus chinensis Bunge via ERK1/2-Mediated MITF Downregulation  

Min-Jin Kim (Nakdonggang National Institute of Biological Resources)
Yong Tae Jeong (Nakdonggang National Institute of Biological Resources)
Buyng Su Hwang (Nakdonggang National Institute of Biological Resources)
Yong Hwang (Nakdonggang National Institute of Biological Resources)
Dae Won Jeong (Nakdonggang National Institute of Biological Resources)
Yeong Taek Oh (Nakdonggang National Institute of Biological Resources)
Publication Information
Korean Journal of Plant Resources / v.35, no.6, 2022 , pp. 704-712 More about this Journal
Abstract
Research on whitening materials using natural alternatives is actively being conducted. The aim of this study was to investigate the in vitro inhibitory effects of Ranunculus chinensis Bunge (RCB) on melanogenesis and associated enzymes, such as tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 in B16F10 murine melanoma cells. We found that RCB extract significantly attenuated melanin synthesis and reduced the activity of intracellular tyrosinase, a rate-limiting melanogenic enzyme. Western blot analysis showed that RCB extract decreased the protein expression of tyrosinase and TRP-1. In addition, it significantly decreased the expression of microphthalmia-associated transcription factor (MITF), a key regulator of melanogenesis. Extracellular signal-regulated kinase (ERK) activation has been reported to be involved in the inhibition of melanogenesis. Thus, we investigated whether the hypopigmentary effects of RCB extract were related to the activation of ERK. RCB extract induced ERK phosphorylation in a dose-dependent manner. Furthermore, it markedly inhibited body pigmentation in a zebrafish model. Our results suggest that RCB extract inhibits melanogenesis by activating ERK pathway-mediated suppression of MITF and its downstream target genes, including tyrosinase. Therefore, RCB extract can be used as a whitening agent in the development of functional cosmetics.
Keywords
B16F10 melanoma cell; Melanin; MITF; Tyrosinase; Whitening;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Busca, R. and R. Ballotti. 2000. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res. 13:60-69.   DOI
2 Busca, R., C. Bertolotto, J.P. Ortonne and R. Ballotti. 1996. Inhibition of the phosphatidylinositol 3-kinase/p70(S6)-kinase pathway induces B16 melanoma cell differentiation. J. Biol Chem. 271:31824-31830.   DOI
3 Chang, C.J., C.S. Lin, C.C Lu, J. Martel, Y.F. Ko, D.M. Ojcius, S.F. Tseng, T.R. Wu, Y.M. Chen, J.D. Young and H.C. Lai. 2015. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat. Commun. 23:7489.
4 Gunia-Krzyzak, A., J. Popiol and H. Marona. 2016. Melanogenesis inhibitors: strategies for searching for and evaluation of active compounds. Curr. Med. Chem. 23:3548-3574.   DOI
5 Hosoi, J., E. Abe, T. Suda and T. Kuroki. 1985. Regulation of melanin synthesis of B16 mouse melanoma cells by 1α,25- dihydroxyvitamin D3 and retinoic acid. Cancer. Res. 45: 1474-1478.
6 Hwang, E.S., T.H. Lee, W.J. Lee, W.S. Shim, E.J. Yeo, S.H. Kim and S.Y. Kim. 2016. A novel synthetic piper amide derivative NED-180 inhibits hyperpigmentation by activating the PI3K and ERK pathways and by regulating Ca2+ influx via TRPM1 channels. Pigment. Cell Melanoma. Res. 29:81-91.   DOI
7 Hyun, H.B., H.J. Hyeon, S.C. Kim, B.R. Go, S.A. Yoon, Y,H Jung and Y.M. Ham. 2021. Anti-melanogenesis effects of Schizophragma hydrangeoides leaf ethanol extracts via downregulation of tyrosinase activity. Korean J. Plant Res. 34:510-516.
8 Ivanova, D., D. Gerova, T. Chervenkov and T. Yankova. 2005. Polyphenols and antioxidant capacity of bulgarian medicinal plants. J. Ethnopharmacol. 96:145-150.   DOI
9 Jinpeng, L., S. Jiang, Y. Yang, X. Zhang, R. Gao, Y. Cao and G. Song. 2020. FGIN-1-27 inhibits melanogenesis by regulating protein kinase A/cAMP-responsive element-binding, protein Kinase C-β, and mitogen-activated protein kinase pathways. Front. Pharmacol. 11: 602889.
10 Lee, D.Y., J.S. Lee, Y.T. Jeong, G.H. Byun and J.H. Kim. 2017. Melanogenesis inhibition activity of floralginsenoside a from Panax ginseng berry. J. Gingeng Res. 41:602-607.   DOI
11 Nigel, W. and Y.E. Feng. 1998. A Practical Dictionary of Chinese Medicine (English and Chinese edition). Subsequent edition, Paradigm Pubns, NM (USA).
12 Levy, C., M. Khaled and D.E Fisher. 2006. MITF: master regulator of melanocyte development and melanoma oncogene. Trends. Mol. Med. 12:406-414.   DOI
13 MacRae, C.A. and R.T Peterson. 2015. Zebrafish as tools for drug discovery. Nat. Rev. Drug Discov. 14:721-731.   DOI
14 Mas, J.S., I. Gerritsen, C. Hahmann, C. Jimenez-Cervantes and J.C. Garcia-Borron. 2003. Rate limiting factors in melanocortin 1 receptor signalling through the cAMP pathway. Pigment. Cell Res. 16:540-547.   DOI
15 Ohguchi, K., Y. Akao and Y. Nozawa. 2006. Stimulation of melanogenesis by the citrus flavonoid naringenin in mouse B16 melanoma cells. Biosci. Biotechnol. Biochem. 70:1499-1501.   DOI
16 Park, J.U., S.Y. Yang, R.H. Guo, H.X. Li, Y.H. Kim and Y.R. Kim. 2020. Anti-melanogenic effect of Dendropanax morbiferus and its active components via protein kinase A/cyclic adenosine monophosphate-responsive binding protein- and p38 mitogen-activated protein kinase-mediated microphthalmia-associated transcription factor downregulation. Front. Pharmacol. 11:507.
17 Price, E.R., H.F. Ding, T. Badalian, S. Bhattacharya, C. Takemoto, T.P. Yao, T.J. Hemesath and D.E. Fisher. 1998. Lineage-specific signaling in melanocytes. C-kit stimulation recruits p300/CBP to microphthalmia. J. Biol. Chem. 273: 17983-17986.   DOI
18 Qiyun, W., A.H.Y. Fung., M.L. Xu, K. Poon, E.Y.L. Liu, X.P. Kong, P. Yao, Q.P. Xiong, T.T.X. Dong and K.W.K. Tsim. 2018. Microphthalmia-associated transcription factor upregulates acetylcholinesterase expression during melanogenesis of murine melanoma cells. J. Biol. Chem. 293: 14417-14428.   DOI
19 Rannekamp, A.J. and R.T Peterson. 2015. 15 years of zebrafish chemical screening. Curr. Opin. Chem. Biol. 24:58-70.   DOI
20 Shibahara, S., K. Yasumoto, S. Amae, T. Udono, K. Watanabe, H. Saito and K. Takeda. 2000. Regulation of pigment cell-specific gene expression by MITF. Pigment Cell Res. 13: 98-102.   DOI
21 Shin, Y.J., C.S. Han, C.S. Lee, H.S. Kim, S.H. Ko, S.K. Hwang, S.G. Ko, J.W. Shin, S.K. Ye and M.H. Chung. 2010. Zeolite 4A, a synthetic Silicate, suppresses melanogenesis through the degradation of microphthalmia-associated transcription factor by extracellular signal-regulated kinase activation in B16F10 melanoma cells. Biol. Pharm. Bull. 33:72-76.   DOI
22 Solano, F. 2014. Melanins: skin pigments and much more - types, structural models, biological functions, and formation routes. New J. Sci. 2014:28.
23 Solano, F., S. Briganti, M. Picardo and G. Ghanem. 2006. Hypopigmenting agents: an updated review on biological, chemical and clinical aspects. Pigment Cell Res. 19:550-571.   DOI
24 Sugumaran, M. 2016. Reactivities of quinone methides versus o-quinones in catecholamine metabolism and eumelanin biosynthesis. Int. J. Mol. Sci. 17:1576.
25 Sun, L.J., C. Guo, L. Yan, H. Li, J. Sun, X. Huo, X. Xie and J. Hu1. 2020. Syntenin regulates melanogenesis via the p38 MAPK pathway. Mol. Med. Rep. 22:733-738.   DOI
26 Videira, I.F., D.F. Moura and S. Magina. 2013. Mechanisms regulating melanogenesis. An Bras. Dermatol. 88:76-83.   DOI
27 Vontzalidou, A., G. Zoidis, E. Chaita, M. Makropoulou, N. Aligiannis, G. Lambrinidis, E. Mikros and A.L. Skaltsounis. 2012. Design, synthesis and molecular studies of dihydrostilbene derivatives as potent tyrosinase inhibitors. Bioorg. Med. Chem. Lett. 22:5523-5526.   DOI
28 Whitney, P.B. and S. Pugliese. 2014. Cosmetic benefits of natural ingredients. J. Drugs Dermatol. 13:1021-1025.
29 Yuma, W., K. Ogino and H. Hirata. 2019. Swimming capability of zebrafish is governed by water temperature, caudal fin length and genetic background. Sci. Rep. 9:16307.
30 Yaar, M., C. Wu, H.Y. Park, L. Panova, G. Schutz and B.A. Gilchrest. 2006. Bone morphogenetic protein-4, a novel modulator of melanogenesis. J. Biol. Chem. 281:25307-25314.   DOI