• Title/Summary/Keyword: typical vehicle

Search Result 297, Processing Time 0.028 seconds

RESEARCH ON MODULARIZED DESIGN AND PERFORMANCE ASSESSMENT BASED ON MULTI-DRIVER OFF-ROAD VEHICLE DRIVING-LINE

  • Yi, J.J.;Yu, B.;Hu, D.Q.;Li, C.G.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.375-382
    • /
    • 2007
  • The multi-driver off-road vehicle drive-line consists of many components, with close connections among them. In order to design and analyze the drive-line efficiently, a modular methodology should be taken. The aim of a modular approach to the modeling of complex systems is to support behavior analysis and simulation in an iterative and thus complex engineering process, by using encapsulated submodels of components and of their interfaces. Multi-driver off-road vehicles are comparatively complicated. The driving-line is an important core part to the vehicle, it has a significant contribution to the performance. Multi-driver off-road vehicles have complex driving-lines, so performance is heavily dependent on the driving-line. A typical off-road vehicle's driving-line system consists of a torque converter, transmission, transfer case and driving-axles, which transfers the power generated by the engine and distributes it effectively to the driving wheels according to the road condition. According to its main function, this paper proposes a modularized approach for design and evaluation of the vehicle's driving-line. It can be used to effectively estimate the performance of the driving-line during the concept design stage. Through an appropriate analysis and assessment method, an optimal design can be reached. This method has been applied to practical vehicle design, it can improve the design efficiency and is convenient to assess and validate the performance of a vehicle, especially of multi-driver off-road vehicles.

Dynamic analysis of long-span cable-stayed bridges under wind and traffic using aerodynamic coefficients considering aerodynamic interference

  • Han, Wanshui;Liu, Huanju;Wu, Jun;Yuan, Yangguang;Chen, Airong
    • Wind and Structures
    • /
    • v.24 no.5
    • /
    • pp.405-430
    • /
    • 2017
  • The aerodynamic characteristics of vehicles are critical to assess vehicle safety and passenger comfort for vehicles running on long span bridges in a windy environment. However, in previous wind-vehicle-bridge (WVB) system analysis, the aerodynamic interference between the vehicle and the bridge was seldom considered, which will result in changing aerodynamic coefficients. In this study, the aerodynamic coefficients of a high-sided truck on the ground (ground case) and a typical bridge deck (bridge deck case) are determined in a wind tunnel. The effects of existent structures including the bridge deck and bridge accessories on the high-sided vehicle's aerodynamic characteristics are investigated. A three-dimensional analytical framework of a fully coupled WVB system is then established based on the finite element method. By inputting the aerodynamic coefficients of both cases into the WVB system separately, the vehicle safety and passenger comfort are assessed, and the critical accidental wind speed for the truck on the bridge in a windy environment is derived. The differences in the bridge response between the windward case and the leeward case are also compared. The results show that the bridge deck and the accessories play a positive role in ensuring vehicle safety and improving passenger comfort, and the influence of aerodynamic interference on the response of the bridge is weak.

Analysis of Truck Traffic Characteristics using BWIM System (BWIM시스템을 이용한 중차량의 통행특성 분석)

  • Hwang, Eui Seung;Bae, Doo Byong;Jung, Kyoung Sup;Jo, Jae Byung
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.223-232
    • /
    • 1999
  • For the design and maintenance of highways and road structures, the statistical data are needed for the vehicle, especially heavy truck crossing. So far, static weighing has been used but it needs fixed station, crews, and it takes a lot of time. Also truck mix and headway distances cannot be obtained. Bridge Weigh-In-Motion system uses the bridge as a weighing scale and collects the axle weights, axle distances. vehicle types and etc. without stopping or slowing down the vehicle. In this study, for the first time in the country, BWIM system is applied on steel I-girder bridge and its applicability is examined. Also data collected in this system is analyzed to get truck traffic characteristics including average daily truck traffic, weight distribution, typical truck configuration and overweight truck status. The results are compared with other data from weighing station and highway toll gates.

  • PDF

Real-Time Vehicle License Plate Detection Based on Background Subtraction and Cascade of Boosted Classifiers

  • Sarker, Md. Mostafa Kamal;Song, Moon Kyou
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.10
    • /
    • pp.909-919
    • /
    • 2014
  • License plate (LP) detection is the most imperative part of an automatic LP recognition (LPR) system. Typical LPR contains two steps, namely LP detection (LPD) and character recognition. In this paper, we propose an efficient Vehicle-to-LP detection framework which combines with an adaptive GMM (Gaussian Mixture Model) and a cascade of boosted classifiers to make a faster vehicle LP detector. To develop a background model by using a GMM is possible in the circumstance of a fixed camera and extracts the motions using background subtraction. Firstly, an adaptive GMM is used to find the region of interest (ROI) on which motion detectors are running to detect the vehicle area as blobs ROIs. Secondly, a cascade of boosted classifiers is executed on the blobs ROIs to detect a LP. The experimental results on our test video with the resolution of $720{\times}576$ show that the LPD rate of the proposed system is 99.14% and the average computational time is approximately 42ms.

Implementation of a Vehicle Production Sequencing Module Using Constraint Satisfaction Technique for Vehicle Production Planning System (자동차 생산계획 시스템에서 제약만족기법을 이용한 생산 시퀀스 모듈 구현)

  • Ha, Young-Hoon;Woo, Sang-Bok;Ahn, Hyun-Sik;Hahn, Hyung-Sang;Park, Young-Jin
    • IE interfaces
    • /
    • v.16 no.3
    • /
    • pp.352-361
    • /
    • 2003
  • Vehicle manufacturing plant is a typical mixed-model production system. Generally it consists of three main shops including body shop, painting shop and assembly shop in addition to engine shop. Each shop contains diverse manufacturing processes, all of which are integrated in a form of flow line. Due to the high pressure from the market requesting small-volume large variety production, production planning becomes very critical for the competitiveness of automotive industry. In order to save costs and production time, production planning system is requested to meet some designated requirements for each shop: to balance the work load in body and assembly shops, and to minimize the number of color changes in painting shop. In this context, we developed a sequencing module for a vehicle production planning system using the ILOG Solver Library. It is designed to take into account all the manufacturing constraints at a time with meeting hard constraints in body shop, minimizing the number of soft constraints violated in assembly shop, and minimizing the number of color changes in painting shop.

A Model Reference Variable Structure Control based on a Neural Network System Identification for an Active Four Wheel Steering System

  • Kim, Hoyong;Park, Yong-Kuk;Lee, Jae-Kon;Lee, Dong-Ryul;Kim, Gi-Dae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.142-155
    • /
    • 2000
  • A MIMO model reference control scheme incorporating the variable structure theory for a vehicle four wheel steering system(4WS) is proposed and evaluated for a class of continuous-time nonlinear dynamics with known or unknown uncertainties. The scheme employs an neural network to identify the plant systems, where the neural network estimates the nonlinear dynamics of the plant. By the Lyapunov direct method, the algorithm is proven to be globally stable, with tracking errors converging to the neighborhood of zero. The merits of this scheme is that the global system stability is guaranteed and it is not necessary to know the exact structure of the system. With the resulting identification model which contains the neural networks, it does not need higher degrees of freedom vehicle model than 3 degree of freedom model. Th proposed scheme is applied to the active four wheel system and shows the validity is used to investigate vehicle handing performances. In simulation of the J-turn maneuver, the reduction of yaw rate overshoot of a typical mid-size car improved by 30% compared to a two wheel steering system(2WS) case, resulting that the proposed scheme gives faster yaw rate response and smaller side angle than the 2WS case.

  • PDF

An Experimental Study on Hydrodynamic Characteristics of a Control Fin for a Supercavitating Underwater Vehicle (초월공동 수중운동체용 제어핀의 유체력 특성에 대한 실험연구)

  • Jeong, So-Won;Park, Sang-Tae;Ahn, Byoung-Kwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.1
    • /
    • pp.75-82
    • /
    • 2018
  • Wedge-shaped fins are generally used to provide sufficient forces and moments to control and maneuver a supercavitating vehicle. There are four fins placed along the girth of the vehicle, near he tail: two of the fins are horizontal and the other two fins are vertical. In a fully developed supercavitating flow condition, a part of the fin is in a cavity pocket and the other is exposed to water. In this paper, experimental investigations of hydrodynamic characteristics of the wedge-shaped fin models are presented. Experiments were conducted at a cavitation tunnel of the Chungnam National University. We first closely observed the typical formation of wake cavitation and measured lift and drag forces acting on two different test models. Next, using a special device for generating natural and artificial supercavities, we investigated hydrodynamic forces at different cavitation number conditions. This work provides a basis for interpreting the cavity stability and hydrodynamic characteristics of the wedge-shaped control fin for a supercavitating vehicle.

Experimental Study of being vehicle cockpit module BSR Noise considering the deterioration condition of the module unit (모듈 단위 열화조건을 고려한 자동차용 칵핏 모듈 이음(BSR Noise)에 대한 시험적 고찰)

  • Yi, Chulhyun;Yang, Jeongmin;Cho, Jinho;Lee, Wonku;Woo, Changsu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.791-795
    • /
    • 2014
  • In this paper, in order to impart the aging condition of the parts, by configuring the cycle of temperature from low temperature was performed by applying the aging conditions for vehicle cockpit module. The reason for the selected modules of the cockpit vehicle parts, because the joint occurrence typical components of the room component is a first module and ceiling cockpit module. After setting the excitation profile using the BSR exciter only that this is for the module degradation after the initial and grasp the change in the dynamic characteristics of the modules based on the before and after deterioration may be made in the module, grasp the noise generating position I measured the noise and proximity. Was also visualized on the position of the joint is generated using a sound camera to objective results occurring where the joint is selected through subjective evaluation.

  • PDF

A Study on the Empirical Modeling of Rubber Bushing for Dynamic Analysis (동역학 해석을 위한 고무부싱의 실험적 모델링에 대한 연구)

  • Sohn, Jeong-Hyun;Baek, Woon-Kyung;Kim, Dong-Jo
    • Elastomers and Composites
    • /
    • v.39 no.2
    • /
    • pp.121-130
    • /
    • 2004
  • A rubber bushing connects the components of the vehicle each other and reduce the vibration transmitted to the chassis frame. A rubber bushing has the nonlinear characteristics for both the amplitude and the frequency and represents the hysteretic responses under the periodic excitation. In this paper, one-axis durability test is performed to describe the mechanical behavior of typical vehicle elastomeric components. The results of the tests are used to develop m empirical bushing model with an artificial neural network. The back propagation algerian is used to obtain the weighting factor of the neural network. A numerical example is carried out to verify the developed bushing model and the vehicle simulation is performed to show the fidelity of proposed model.

DEVELOPMENT OF THE INDEPENDENT-TYPE STEER-BY-WIRE SYSTEM USING HILS

  • Jo, H.Y.;Lee, U.K.;Kam, M.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.321-327
    • /
    • 2006
  • The previous paper described the logic tuning, the vehicle manufacture and the evaluation in the HILS system for the purpose of the development of a Steer-By-Wire(SBW) system. This paper describes the content of applying to a new HILS system, the vehicle manufacture and the result of the evaluation performed in Independent-type SBW(I-SBW) system. Here, the SBW indicates the method of steering both tires by using one motor as the steering gear actuator, similar to the conventional steering system. On the other hand, the I-SBW means the method of steering both front tires independently by using dual motors as the steering gear actuator. As a result, the layout and the kinematical mechanism of the I-SBW system are quite different from those of the typical steering mechanism. Nevertheless, there is no change in the steering column motor system. In the report, we first describe the structure and control logic of the I-SBW system, and then the control effect on this system as applied for both the HILS system and a vehicle. Furthermore, our HILS system involves the actuator mechanism which realizes the reaction force of the road surface with a minimized frictional force in operation. Therefore, it is possible for us to tune the control logic via the HILS system and confirm the effect of the tuned control logic by applying it to a vehicle with the I-SBW system.