• Title/Summary/Keyword: typhoon

Search Result 1,292, Processing Time 0.029 seconds

Development and run time assessment of the GPU accelerated technique of a 2-Dimensional model for high resolution flood simulation in wide area (광역 고해상도 홍수모의를 위한 2차원 모형의 GPU 가속기법 개발 및 실행시간 평가)

  • Choi, Yun Seok;Noh, Hui Seong;Choi, Cheon Kyu
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.991-998
    • /
    • 2022
  • The purpose of this study is to develop GPU (Graphics Processing Unit) acceleration technique for 2-dimensional model and to assess the effectiveness for high resolution flood simulation in wide area In this study, GPU acceleration technique was implemented in the G2D (Grid based 2-Dimensional land surface flood model) model, using implicit scheme and uniform square grid, by using CUDA. The technique was applied to flood simulation in Jinju-si. The spatial resolution of the simulation domain is 10 m × 10 m, and the number of cells to calculate is 5,090,611. Flood period by typhoon Mitag, December 2019, was simulated. Rainfall radar data was applied to source term and measured discharge of Namgang-Dam (Ilryu-moon) and measured stream flow of Jinju-si (Oksan-gyo) were applied to boundary conditions. From this study, 2-dimensional flood model could be implemented to reproduce the measured water level in Nam-gang (Riv.). The results of GPU acceleration technique showed more faster flood simulation than the serial and parallel simulation using CPU (Central Processing Unit). This study can contribute to the study of developing GPU acceleration technique for 2-dimensional flood model using implicit scheme and simulating land surface flood in wide area.

Future Projection of Extreme Climate over the Korean Peninsula Using Multi-RCM in CORDEX-EA Phase 2 Project (CORDEX-EA Phase 2 다중 지역기후모델을 이용한 한반도 미래 극한 기후 전망)

  • Kim, Do-Hyun;Kim, Jin-Uk;Byun, Young-Hwa;Kim, Tae-Jun;Kim, Jin-Won;Kim, Yeon-Hee;Ahn, Joong-Bae;Cha, Dong-Hyun;Min, Seung-Ki;Chang, Eun-Chul
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.607-623
    • /
    • 2021
  • This study presents projections of future extreme climate over the Korean Peninsula (KP), using bias-corrected data from multiple regional climate model (RCM) simulations in CORDEX-EA Phase 2 project. In order to confirm difference according to degree of greenhouse gas (GHG) emission, high GHG path of SSP5-8.5 and low GHG path of SSP1-2.6 scenario are used. Under SSP5-8.5 scenario, mean temperature and precipitation over KP are projected to increase by 6.38℃ and 20.56%, respectively, in 2081~2100 years compared to 1995~2014 years. Projected changes in extreme climate suggest that intensity indices of extreme temperatures would increase by 6.41℃ to 8.18℃ and precipitation by 24.75% to 33.74%, being bigger increase than their mean values. Both of frequency indices of the extreme climate and consecutive indices of extreme precipitation are also projected to increase. But the projected changes in extreme indices vary regionally. Under SSP1-2.6 scenario, the extreme climate indices would increase less than SSP5-8.5 scenario. In other words, temperature (precipitation) intensity indices would increase 2.63℃ to 3.12℃ (14.09% to 16.07%). And there is expected to be relationship between mean precipitation and warming, which mean precipitation would increase as warming with bigger relationship in northern KP (4.08% ℃-1) than southern KP (3.53% ℃-1) under SSP5-8.5 scenario. The projected relationship, however, is not significant for extreme precipitation. It seems because of complex characteristics of extreme precipitation from summer monsoon and typhoon over KP.

Generating and evaluating 10 min. flood operation data on Wangsin reservoir at typhoon Hinnamnor (태풍 힌남노에 따른 왕신저수지의 10분 단위 홍수운영자료 생산 및 평가)

  • Jaekyoung Noh;Jaenam Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.60-60
    • /
    • 2023
  • 태풍 힌남노에 경주에 위치한 총저수량 184만m3, 유역면적 22km2인 왕신저수지는 303m의 제체가 2시간여 동안 전면 월류하는 초유의 사태를 겪었다. 그때 다행히 저수지 수위는 10분 단위로 기록됐다. 이 자료를 이용하여 제체 월류현상을 평가하기 위해 저수지 운영의 기본자료인 유입량, 저수량, 방류량 등을 10분 단위로 생산코자 했다. 방법은 인근에 위치하고 운영자료가 있는 총저수량 260만m3, 유역면적 3.7km2인 감포댐에 대해 유입량 모의방법을 검증하고, 왕신저수지에 그대로 적용하여 유입량을 모의하고, 물수지에 의해 방류량을 계산하는 것으로 했다. 모의결과는 저수량 오차로 신뢰도를 확인했다. 여기서 저수지 유입량은 ONE 모형을 이용하여 10분 단위로 생산했다. 2022년 9월 5일부터 6일까지 10분 단위로 모의한 결과는 다음과 같다. 첫째, 감포댐 유역은 강우량은 10분 최대 32.3mm, 총강우량 196.0mm였고, 유입량은 10분 최대 80.1m3/s, 총유입량 59만m3로 모의됐고, 신뢰도는 RMSE 2.120mm, NSE 0.947, R2는 0.949로 매우 높게 나타났다. 그리고 저수량 모의 신뢰도도 RMSE 0.153m, NSE 0.993, R2는 0.997로 높았다. 둘째, 왕신저수지 유역은 강우량은 유역내에 위치한 환경부 관리의 화산리 관측소에서 10분 최대 21.0mm, 총강우량은 10시간 동안 422.0mm였고, 유입량은 10분 최대 716.5m3/s, 총유입량 904만m3로 모의됐고, 유출률은 95.7%로 강우량 거의가 유입되는 것으로 나타났다. 셋째, 왕신 저수지의 방류량은 10분 최대 610.8m3/s, 총방류량 848만m3로 계산됐고, 총유입량의 93.8%에 상당한 것으로 나타났다. 그리고 저수지 물수지에 의해 10분 단위 모의 저수위의 신뢰도는 RMSE 0.117m, NSE 0.994, R2는 0.999로 매우 높게 나타났다. 넷째, 왕신저수지의 제체고 EL.59.20m를 월류한 시간은 9월6일 5시50분부터 8시까지 2시간10분 동안였으며, 관측 저수위는 EL59.24m~EL.60.28m, 모의 저수위는 EL.59.31m~EL.60.29m로 나타났다. 월류되는 동안 총유입량은 544만m3, 총방류량은 527만m3로 나타나, 유입량의 96.8%가 월류되는 것으로 계산돼 저수지의 저류효과는 거의 없는 것으로 나타났다. 이때 유입량은 전기간의 60.2%, 방류량은 62.1%에 상당했다. 다섯째, 힌남노에 따른 왕신저수지의 홍수조절효과는 첨두유입량을 105.7m3/s 저감시켰고, 홍수량을 56만m3을 저류시킨 것으로 분석됐다.

  • PDF

A Study on the Erosion and Retreat of Sea-Cliff through the Multi-temporal Aerial Photograph Data and Field Survey: The Case Study of Taean Peninsula, Korea (다중시기 항공사진과 현장조사를 통한 해안침식 변화 연구: 태안반도를 사례로)

  • WOO, Han-byol;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.17 no.4
    • /
    • pp.71-83
    • /
    • 2010
  • In this study, the volume of shoreline retreat at sea-cliffs in the Taean peninsula(West Coast of Korea) was estimated and their erosion and seasonal landforms characteristics changes were investigated through multi-temporal aerial photographs and field survey. Based on the analysis of aerial photographs through ortho-correction, the results show that the length of shoreline and erosion area increase as erosion at sea-cliffs occurs in Pado-li and Dundu-li. To obtain the seasonal quantitative landforms changes and retreat of sea-cliffs, we marked top, middle, and bottom datum-points, from which the distance to the nearest bedrock was repeatedly measured. In these regions, the retreat of sea-cliffs gradually increases in spring to summer, but gradually decreases in autumn. In particular, the typhoon that has a great influence on the Korean peninsula in July to September in summer would drastically increase the retreat of sea-cliffs in comparison with other seasons. As the outcrop of sea-cliffs repeats freezing and thawing in winter, the retreat of sea-cliffs increases a little due to active mechanical weathering. To know the erosion and seasonal landforms changes of sea-cliffs, we took pictures of them in every month and then analyze their condition. The retreat of sea-cliffs was repeatedly occurred by the circulation of the erosion of sea-cliff base, landslides, the formation of slope sediment debris and their erosion, in that order.

Ordinary Kriging of Daily Mean SST (Sea Surface Temperature) around South Korea and the Analysis of Interpolation Accuracy (정규크리깅을 이용한 우리나라 주변해역 일평균 해수면온도 격자지도화 및 내삽정확도 분석)

  • Ahn, Jihye;Lee, Yangwon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.1
    • /
    • pp.51-66
    • /
    • 2022
  • SST (Sea Surface Temperature) is based on the atmosphere-ocean interaction, one of the most important mechanisms for the Earth system. Because it is a crucial oceanic and meteorological factor for understanding climate change, gap-free grid data at a specific spatial and temporal resolution is beneficial in SST studies. This paper examined the production of daily SST grid maps from 137 stations in 2020 through the ordinary kriging with variogram optimization and their accuracy assessment. The variogram optimization was achieved by WLS (Weighted Least Squares) method, and the blind tests for the interpolation accuracy assessment were conducted by an objective and spatially unbiased sampling scheme. The four-round blind tests showed a pretty high accuracy: a root mean square error between 0.995 and 1.035℃ and a correlation coefficient between 0.981 and 0.982. In terms of season, the accuracy in summer was a bit lower, presumably because of the abrupt change in SST affected by the typhoon. The accuracy was better in the far seas than in the near seas. West Sea showed better accuracy than East or South Sea. It is because the semi-enclosed sea in the near seas can have different physical characteristics. The seasonal and regional factors should be considered for accuracy improvement in future work, and the improved SST can be a member of the SST ensemble around South Korea.

An Evaluation of Extreme Precipitation based on Local Downpour using Empirical Simulation Technique (Empirical Simulation Technique 기법을 이용한 집중호우의 극한강우 평가)

  • Oh, Tae-Suk;Moon, Young-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2B
    • /
    • pp.141-153
    • /
    • 2009
  • The occurrence causes of the extreme rainfall to happen in Korea can be distinguished with the typhoons and local downpours. The typhoon events attacked irregularly to induce the heavy rainfall, and the local downpour events mean a seasonal rain front and a local rainfall. Almost every year, the typhoons and local downpours that induced a heavy precipitation be generated extreme disasters like a flooding. Consequently, in this research, There were distinguished the causes of heavy rainfall events with the typhoons and the local downpours at Korea. Also, probability precipitation was computed according to the causes of the local downpour events. An evaluation of local downpours can be used for analysis of heavy rainfall event in short period like a flash flood. The methods of calculation of probability precipitation used the parametric frequency analysis and the Empirical Simulation Technique (EST). The correlation analysis was computed between annual maximum precipitation by local downpour events and sea surface temperature, moisture index for composition of input vectors. At the results of correlation analysis, there were revealed that the relations closely between annual maximum precipitation and sea surface temperature. Also, probability precipitation using EST are bigger than probability precipitation of frequency analysis on west-middle areas in Korea. Therefore, region of west-middle in Korea should prepare the extreme precipitation by local downpour events.

Dam Break Analysis with HEC-HMS and HEC-RAS (HEC-HMS와 HEC-RAS를 이용한 댐 붕괴 해석)

  • Hong, Seung-Jin;Kim, Soo-Jun;Kim, Hung-Soo;Kyung, Min-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4B
    • /
    • pp.347-356
    • /
    • 2009
  • This study simulates the dam break situation by a probable maximum precipitation of Soyang-River Dam using HEC-HMS model and HEC-RAS model and compares the simulated results. The probable maximum precipitation was calculated using the flood event of the typhoon Rusa occurred in 2002 and using the mean areal precipitation of the Gangreung region and the moisture maximization method. The estimated probable maximum precipitations were compared for the duration of 6, 12, 18, and 24 hrs and were used as input data for the HEC-HMS model. Moreover, the inflow data calculated by HEC-HMS were utilized as ones for HEC-RAS, and then unsteady flow analysis was conducted. The two models were used for the dam break analysis with the same conditions and the peak flow estimated by HEC-HMS was larger than that of the HEC-RAS model. The applicability of two models was performed from the dam break analysis then we found that we could simulate more realistic peak flow by HEC-RAS than HEC-HMS. However, when we need more fast simulation results we could use HEC-HMS. Therefore, we may need the guidelines for the different utilizations with different purposes of two models. Furthermore, since the two models still include uncertainties, it is important to establish more detailed topographical factors and data reflecting actual rivers.

A Modified grid-based KIneMatic wave STOrm Runoff Model (ModKIMSTORM) (II) - Application and Analysis - (격자기반 운동파 강우유출모형 KIMSTORM의 개선(II) - 적용 및 분석 -)

  • Jung, In Kyun;Shin, Hyung Jin;Park, Jin Hyeog;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.709-721
    • /
    • 2008
  • This paper is to test the applicability of ModKIMSTORM (Modified KIneMatic Wave STOrm Runoff Model) by applying it to Namgangdam watershed of $2,293km^2$. Model inputs (DEM, land use, soil related information) were prepared in 500 m spatial resolution. Using five typhoon events (Saomi in 2000, Rusa in 2002, Maemi in 2003, Megi in 2004 and Ewiniar in 2006) and two storm events (May of 2003 and July of 2004), the model was calibrated and verified by comparing the simulated streamflow with the observed one at the outlet of the watershed. The Pearson's coefficient of determination $R^2$, Nash and Sutcliffe model efficiency E, the deviation of runoff volumes $D_v$, relative error of the peak runoff rate $EQ_p$, and absolute error of the time to peak runoff $ET_p$ showed the average value of 0.984, 0.981, 3.63%, 0.003, and 0.48 hr for 4 storms calibration and 0.937, 0.895, 8.08%, 0.138, and 0.73 hr for 3 storms verification respectively. Among the model parameters, the stream Manning's roughness coefficient was the most sensitive for peak runoff and the initial soil moisture content was highly sensitive for runoff volume fitting. We could look into the behavior of hyrologic components from the spatial results during the storm periods and get some clue for the watershed management by storms.

Flood Risk Mapping with FLUMEN model Application (FLUMEN 모형을 적용한 홍수위험지도의 작성)

  • Cho, Wan Hee;Han, Kun Yeun;Ahn, Ki Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.169-177
    • /
    • 2010
  • Recently due to the typhoon and extreme rainfall induced by abnormal weather and climate change, the probability of severe damage to human life and property is rapidly increasing. Thus it is necessary to create adequate and reliable flood risk map in preparation for those natural disasters. The study area is Seo-gu in Daegu which is located near Geumho river, one of the tributaries of Nakdong river. Inundation depth and velocity at each time were calculated by applying FLUMEN model to the target area of interest, Seo-gu in Daegu. And the research of creating flood risk map was conducted according to the Downstream Hazard Classification Guidelines of USBR. The 2-dimensional inundation analysis for channels and protected lowland with FLUMEN model was carried out with the basic assumption that there's no levee failure against 100 year precipatation and inflow comes only through the overflowing to the protected lowland. The occurrence of overflowing was identified at the levee of Bisan-dong located in Geumho watershed. The level of risk was displayed for house/building residents, drivers and pedestrians using information about depth and velocity of each node computed from the inundation analysis. Once inundation depth map and flood risk map for each region is created with this research method, emergency action guidelines for residents can be systemized and it would be very useful in establishing specified emergency evacuation plans in case of levee failure and overflowing resulting from a flood.

Development of Predicting Function for Wind Wave Damage based on Disaster Statistics: Focused on East Sea and Jeju Island (재해통계기반 풍랑피해액예측함수 개발 : 동해안, 제주를 중심으로)

  • Choo, Tai-Ho;Kwon, Jae-Wook;Yun, Gwan-Seon;Yang, Da-Un;Kwak, Kil-Sin
    • Journal of the Korean Society for Environmental Technology
    • /
    • v.18 no.2
    • /
    • pp.165-172
    • /
    • 2017
  • In current stage, it is hard to predict the scale of damage caused by natural disaster and it is hard to deal with it. However, in case of disaster planning level, if it is possible to predict the scale of disaster then quick reaction can be done which will reduce the damage. In the present study, therefore, function of wind wave damage estimation among various disaster is developed. Damage of wind wave and typhoon in eastern and Jeju coastal zone was collected from disaster report (1991~2014) published by Ministry of Public Safety and Security and to reflect inflation rate, 2014 damage cost was converted. Also, wave height, wind speed, wave direction, wave period, etc was collected from Meteorological Administration and Korea Hydrographic and Oceanographic Administration web site. To reflect the characteristic of coastal zone when wave damage occurs, CODI(Coastal Disaster Index), COSI(Coastal Sensitivity Index), CPII(Coastal Potential Impact Index) published by Korea Hydrographic and Oceanographic Agency in 2015 were used. When damage occurs, function predicting wind wave damage was developed through weather condition, regional characteristic index and correlation of damage cost.