• Title/Summary/Keyword: types of mathematics instruction

Search Result 42, Processing Time 0.02 seconds

Theoretical Perspectives for Analyzing Explanation, Justification and Argumentation in Mathematics Classrooms.

  • Yackel, Erna
    • Research in Mathematical Education
    • /
    • v.8 no.1
    • /
    • pp.1-18
    • /
    • 2004
  • Current interest in mathematics learning that focuses on understanding, mathematical reasoning and meaning making underscores the need to develop ways of analyzing classrooms that foster these types of learning. In this paper, the author show that the constructs of social and socio-mathematical norms, which grew out of taking a symbolic interactionist perspective, and Toulmins scheme for argumentation, as elaborated for mathematics education by Krummheuer [The ethnology of argumentation. In: The emergence of mathematical meaning: Interaction in classroom cultures (1995, pp. 229-269). Hillsdale, NJ: Erlbaum], provide us with means to analyze aspects of explanation, justification and argumentation in mathematics classrooms, including means through which they can be fostered. Examples from a variety of classrooms are used to clarify how these notions can inform instruction at all levels, from the elementary grades through university-level mathematics.

  • PDF

Theoretical Perspectives for Analyzing Explanation, Justification and Argumentation in Mathematics Classrooms

  • Yackel, Erna
    • Communications of Mathematical Education
    • /
    • v.18 no.1 s.18
    • /
    • pp.1-18
    • /
    • 2004
  • Current interest in mathematics learning that focuses on understanding, mathematical reasoning and meaning making underscores the need to develop ways of analyzing classrooms that foster these types of learning. In this paper, I show that the constructs of social and sociomathematical norms, which grew out of taking a symbolic interactionist perspective, and Toulmins scheme for argumentation as elaborated for mathematics education by Krummheuer, provide us with means to analyze aspects of explanation justification and argumentation in mathematics classrooms, including means through which they can be fostered. Examples from a variety of classrooms are used to clarify how these notions can inform instruction at all levels, from the elementary grades through university-level mathematics.

  • PDF

Theoretical Perspectives for Analyzing Explanation, Justification and Argumentation in Mathematics Classrooms (수학교실에서 설명, 정당화와 논증 분석을 위한 이론적 관점)

  • Erna Yackel
    • The Mathematical Education
    • /
    • v.43 no.1
    • /
    • pp.97-107
    • /
    • 2004
  • Current interest in mathematics learning that focuses on understanding, mathematical reasoning and meaning making underscores the need to develop ways of analyzing classrooms that foster these types of learning. In this paper, I show that the constructs of social and sociomathematical norms, which grew out of taking a symbolic interactionist perspective, and Toulmin's scheme for argumentation, as elaborated for mathematics education by Kummheuer, provide us with means to analyze aspects of explanation, justification and argumentation in mathematics classrooms, including means through which they can be fostered. Examples from a variety of classrooms are used to clarify how these notions can inform instruction at all levels, from the elementary grades through university-level mathematics.

  • PDF

Analysis on the Theoretical Models Related to the Integration of Science and Mathematics Education: Focus on Four Exemplary Models

  • Lee, Hyon-Yong
    • Journal of The Korean Association For Science Education
    • /
    • v.31 no.3
    • /
    • pp.475-489
    • /
    • 2011
  • The purposes of this study were to inform the exemplary models of integrated science and mathematics and to analyze and discuss their similarities and differences of the models. There were two steps to select the exemplary models of integrated science and mathematics. First, the second volume (Berlin & Lee, 2003) of the bibliography of integrated science and mathematics was analyzed to identify the models. As a second step, we selected the models that are dealt with in the School Science Mathematics journal and were cited more than three times. The findings showed that the following four exemplary theoretical models were identified and published in the SSM journal: the Berlin-White Integrated Science and Mathematics (BWISM) Model, the Mathematics/Science Continuum Model, the Continuum Model of Integration, and the Five Types of Science and Mathematics Integration. The Berlin-White Integrated Science and Mathematics (BWISM) Model focused an interpretive or framework theory for integrated science and mathematics teaching and learning. BWISM focused on a conceptual base and a common language for integrated science and mathematics teaching and learning. The Mathematics/Science Continuum Model provided five categories and ways to clarify the extent of overlap or coordination between science and mathematics during instructional practice. The Continuum Model of Integration included five categories and clarified the nature of the relationship between the mathematics and science being taught and the curricular goals for the disciplines. These five types of science and mathematics integrations described the method, type, and instructional implications of five different approaches to integration. The five categories focused on clarifying various forms of integrated science and mathematics education. Several differences and similarities among the models were identified on the basis of the analysis of the content and characteristics of the models. Theoretically, there is strong support for the integration of science and mathematics education as a way to enhance science and mathematics learning experiences. It is expected that these instructional models for integration of science and mathematics could be used to develop and evaluate integration programs and to disseminate integration approaches to curriculum and instruction.

An Analysis of Vocabulary Rating and Types in Elementary Mathematics Textbooks for Grade 1-2 (초등학교 1~2학년 수학 교과서 어휘의 등급 및 유형별 분석)

  • Park, Mimi;Lee, Eunjung
    • Education of Primary School Mathematics
    • /
    • v.25 no.4
    • /
    • pp.361-375
    • /
    • 2022
  • In this study, the vocabularies in elementary mathematics textbooks for grade 1-2 were analyzed according to 9-degree of semantic system. Also, the types of vocabulary were analyzed using general academic words, mathematics specific concept words, and mathematics general concept words. As a result, percentages of 1-degree and 2-degree vocabulary was the most in both grade 1 and 2 mathematics textbooks. It also shows that some of general academic words were 3-degree vocabulary and some of mathematics specific concept words were either unregistered or 1-degree vocabulary. In particular, general academic words, which are 3-degree vocabulary, may be unfamiliar to 1st and 2nd grade students. Therefore, students should be given the opportunity to guess and understand the contextual meaning of general academic words from the given contexts in textbooks. The frequency of use of mathematics general concept words in grade 2 textbook increased significantly compared to grade 1 textbook. Since mathematics general concept words are academic and technical vocabulary they should be taught explicitly. Based on the results of this study, implications for vocabulary instruction in mathematics textbooks were discussed.

Action Research on Math Competencies-oriented Assessment of Integrated Instruction (수업과 통합한 수학 교과 역량 중심의 평가 실행 연구)

  • Kim, Yukyung
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.21 no.1
    • /
    • pp.93-113
    • /
    • 2017
  • This research analyzed the cases of math competencies-oriented assessment, integrating assessment and instruction, which had been conducted in an elementary school whose assessment system involves frequent tests from a formative perspective on assessment. The research outcome is as follows: First, the competencies-oriented assessment of integrating instruction made possible for curriculum restructuring and competencies-oriented teaching, whereas more emphasis needs to be focused on the assessment feedback. Second, assessment on math competencies involves multiple dimensions; therefore, it needs to be managed to prevent problems arising due to overlap between different competencies. Third, though it has been identified that with evaluation it is possible to recognize and gradually improve the areas short of competency, more practical studies need to be conducted in this regard. Fourth, even with the fact that various types of evaluation ensure its fairness, make an accurate interpretation of the evaluation result before arriving at a comprehensive assessment.

  • PDF

On Developments of Teaching-Learning Contents and Constructivist Teaching Methods Using Mobile Applications Based on Augmented Reality in Mathematics Education (증강현실 기반 모바일 앱을 활용한 수학 교수·학습 콘텐츠 개발과 구성주의적 수업방안)

  • Kim, Byung Hak;Song, Jinsu;Park, Ye Eun;Jang, Yo Han;Jeong, Young Hun;Ahn, Jin Hee;Kim, Jun Hyuk;Go, Eunryeong;Jang, In Kyung
    • Communications of Mathematical Education
    • /
    • v.33 no.3
    • /
    • pp.207-229
    • /
    • 2019
  • In the era of the Fourth Industrial Revolution, various attempts have been made to incorporate ICT technology into mathematics teaching and learning, and the necessity and efficiency of classroom instruction using flipped learning, virtual reality and augmented reality have attracted attention. This leads to an increase in demand for instructional contents and their use in education. Therefore, there is a growing need for the development of instructional contents that can be applied in the field and the study of teaching methods. In this point of view, this research classifies the types of teaching-learning, presents the flipped learning instruction and mathematics contents by teaching-learning types using constructivist mathematics education principles and augmented reality-based mobile applications. These methods and lesson plans can provide a useful framework for teaching-learning in mathematics education.

Investigation of Present State about Mathematical Reasoning in Secondary School -Focused on Types of Mathematical Reasoning- (학교 현장에서 수학적 추론에 대한 실태 조사 -수학적 추론 유형 중심으로-)

  • 이종희;김선희
    • The Mathematical Education
    • /
    • v.41 no.3
    • /
    • pp.273-289
    • /
    • 2002
  • It tends to be emphasized that mathematics is the important discipline to develop students' mathematical reasoning abilities such as deduction, induction, analogy, and visual reasoning. This study is aimed for investigating the present state about mathematical reasoning in secondary school. We survey teachers' opinions and analyze the results. The results are analyzed by frequency analysis including percentile, t-test, and MANOVA. Results are the following: 1. Teachers recognized mathematics as knowledge constructed by deduction, induction, analogy and visual reasoning, and evaluated their reasoning abilities high. 2. Teachers indicated the importances of reasoning in curriculum, the necessities and the representations, but there are significant difference in practices comparing to the former importances. 3. To evaluate mathematical reasoning, teachers stated that they needed items and rubric for assessment of reasoning. And at present, they are lacked. 4. The hindrances in teaching mathematical reasoning are the lack of method for appliance to mathematics instruction, the unpreparedness of proposals for evaluation method, and the lack of whole teachers' recognition for the importance of mathematical reasoning

  • PDF

A Study on Open Education for Developing Creativity in Mathematics Education (수학교육에서 창의성 신장을 위한 열린교육 방안에 대한 연구1))

  • 전평국;이재학;백석윤;박성선
    • Education of Primary School Mathematics
    • /
    • v.5 no.2
    • /
    • pp.71-94
    • /
    • 2001
  • The purposes of this study were to design small group collaborative learning models for developing the creativity and to analyze the effects on applying the models in mathematics teaching and loaming. The meaning of open education in mathematics learning, the relation of creativity and inquiry learning, the relation of small group collaborative learning and creativity, and the relation of assessment and creativity were reviewed. And to investigate the relation small group collaborative learning and creativity, we developed three types of small group collaborative learning model- inquiry model, situation model, tradition model, and then conducted in elementary school and middle school. As a conclusion, this study suggested; (1) Small group collaborative learning can be conducted when the teacher understands the small group collaborative learning practice in the mathematics classroom and have desirable belief about mathematics instruction. (2) Students' mathematical anxiety can be reduced and students' involvement in mathematics learning can be facilitated, when mathematical tasks are provided through inquiry model and situation model. (3) Students' mathematical creativity can be enhanced when the teacher make classroom culture that students' thinking is valued and teacher's authority is reduced. (4) To develop students' mathematical creativity, the interaction between students in small group should be encouraged, and assessment of creativity development should be conduced systematically and continuously.

  • PDF

Maintaining Cognitively Challenging Discourse Through Student Silence

  • Jensen, Jessica;Halter, Marina;Kye, Anna
    • Research in Mathematical Education
    • /
    • v.23 no.2
    • /
    • pp.63-92
    • /
    • 2020
  • Student engagement in high-level, cognitively demanding instruction is pivotal for student learning. However, many teachers are unable to maintain such instruction, especially in instances of non-responsive students. This case study of three middle school teachers explores prompts that aim to move classroom discussions past student silence. Prompt sequences were categorized into Progressing, Focusing, and Redirecting Actions, and then analyzed for maintenance of high levels of cognitive demand. Results indicate that specific prompt types are prone to either raise or diminish the cognitive demand of a discussion. While Focusing Actions afforded students opportunities to process information on a more meaningful level, Progressing Actions typically lowered cognitive demand in an effort to get through mathematics content or a specific method or procedure. Prompts that raise cognitive demand typically start out as procedural or concrete and progress to include students' thoughts or ideas about mathematical concepts. This study aims to discuss five specific implications on how teachers can use prompting techniques to effectively maintain cognitively challenging discourse through moments of student silence.