• Title/Summary/Keyword: type 1 T cells

Search Result 621, Processing Time 0.035 seconds

Psoriasis as a T-cell-mediated Immunologic Disease (T 세포 매개 면역질환으로서의 건선)

  • Lew, Wook
    • IMMUNE NETWORK
    • /
    • v.2 no.4
    • /
    • pp.189-194
    • /
    • 2002
  • Although the exact mechanism responsible for the pathogenesis of psoriasis is unclear, interferon-${\gamma}$ producing type 1 T cells have been reported to play a significant role. Infiltrating activated type 1 T cells in the lesions are believed to be responsible for stimulating keratinocytes, which produce many cytokines and growth factors. The hyperproliferative epidermis is understood to be the result of either the cytokines produced by the intraepidermal T cells or the reactive phenomenon after keratinocyte damage. The microenvironment in psoriatic lesions deviates toward the type 1 status, because of the increased type 1 cytokines and either the decreased or unchanged type 2 cytokines observed in psoriatic lesions. Therefore, this review focused on a T-cell-mediated immunological basis for the current hypothesis of the psoriasis pathogenesis.

The effect of intracellular trafficking of CD1d on the formation of TCR repertoire of NKT cells

  • Shin, Jung Hoon;Park, Se-Ho
    • BMB Reports
    • /
    • v.47 no.5
    • /
    • pp.241-248
    • /
    • 2014
  • CD1 molecules belong to non-polymorphic MHC class I-like proteins and present lipid antigens to T cells. Five different CD1 genes (CD1a-e) have been identified and classified into two groups. Group 1 include CD1a-c and present pathogenic lipid antigens to ${\alpha}{\beta}$ T cells reminiscence of peptide antigen presentation by MHC-I molecules. CD1d is the only member of Group 2 and presents foreign and self lipid antigens to a specialized subset of ${\alpha}{\beta}$ T cells, NKT cells. NKT cells are involved in diverse immune responses through prompt and massive production of cytokines. CD1d-dependent NKT cells are categorized upon the usage of their T cell receptors. A major subtype of NKT cells (type I) is invariant NKT cells which utilize invariant $V{\alpha}14-J{\alpha}18$ TCR alpha chain in mouse. The remaining NKT cells (type II) utilize diverse TCR alpha chains. Engineered CD1d molecules with modified intracellular trafficking produce either type I or type II NKT cell-defects suggesting the lipid antigens for each subtypes of NKT cells are processed/generated in different intracellular compartments. Since the usage of TCR by a T cell is the result of antigen-driven selection, the intracellular metabolic pathways of lipid antigen are a key in forming the functional NKT cell repertoire.

Effect of Bambusae Caulis in Liquamen on the Synthesis of Basement Membrane Proteins during Proliferation and Differentiation of 3T3-L 1 Cells (죽역이 3T3-L1 세포의 증식 및 분화시 기저영 단백질 합성에 미치는 영향)

  • Jeon Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.5
    • /
    • pp.1315-1320
    • /
    • 2003
  • The purpose of this research was to investigate effects of Bambusae Caulis in Liquamen (BCL) on the synthesis of basement membrane proteins during proliferation and differentiation of 3T3-L1 cells. BCL has been used to relieve the cough and asthma, and remove phlegm in traditional oriental medicines. In recent years. it was studied for its antiinflammatory, antiallergenic. immune-modulating and anticarcinogenic capabilities. We have previously observed that glycyrrhizin stimulates the adipose conversion of 3T3-L1 cells. To investigate effects of BCL on the basement membrane proteins during proliferation and differentiation of 3T3-L1 cells, we have analyzed synthetic amounts of basement membrane components such as type IV collagen and BM40. BCL stimulated the synthesis and secretion of type IV collagen from both 3T3-L1 preadipocytes and adipocytes. The synthesis and secretion of BM40 was not affected by BCL. The continuous addition of BCL markedly stimulated cell growth and increased cell density. These results suggest an important role for type IV collagen in adipocyte differentiation.

Insulin - Like Growth Factor-I Effects on the Proliferation and Bone Matrix Protein Gene Expression of MC3T3-E1 Cell (MC3T3-E1 세포증식 및 골기질 단백질 발현에 대한 인슐린유사성장인자-I의 효과)

  • Lee, Dong-Sik;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.2
    • /
    • pp.389-405
    • /
    • 2000
  • The purpose of this study is to evaluate the effect of IGF-I for DNA synthetic activity and the mRNA expression of bone matrix protein, type I collagen and osteopontin in prolifetation and differentiation of MC3T3-E1 cells. To evaluate DNA synthetic activity, cells were seeded at $2{\times}10^4cells/ml$ in 24 well plates and to evaluate mRNA of type I collagen and osteopontin cells were seeded at $5{\times}10^5cells/ml$ in 100mm culture dishes. These cells were cultured in alpha-minimum essential medium(${\alpha}-MEM$) containing 10% fetal bovine serum at $37^{\circ}C$, 5% $CO_2$ incubator. For DNA synthetic activity test 1, 10, 100ng/ml IGF-I were added to the cells which had been cultured for 3 days before 24 hours. For type I collagen mRNA expression 1, 10ng/ml IGF-I were added to the cells which had been cultured for 5, 10 days and for osteopontin mRNA expression 0.1, 1, 10ng/ml IGF-I were added to the cells which had been cultured for 5, 15, 20 days. Cell proliferaton was measured by the incorporation of [$^3H$]-thymidine into DNA and expression for type I collagen and osteopontin were measured by northern blot analysis. The results were as follows : DNA synthetic activity were generally higher in experimental group than control group. Expressions of type I collagen mRNA were higher at 5 day group and much lower at 10 day group in the control groups. In the experimental groups, mRNA expressions were slightly increased when 1 ng/ml IGF-I were added to 5 day group and decreased in all experimental 10 day groups. Expressions of osteopontin mRNA were higher at 20 day groups and lower at 15 day groups than the control groups. In the experimental groups, mRNA expressions were incereased when 0.1, 1 ng/ml IGF-I were added to 5 day group and in all the 15 day groups, but decreased when 0.1, 1, 10 ng/ml IGF-I were added to 20 day groups. IGF-I stimulated DNA synthetic activity of MC3T3-E1 cells during proliferation stage significantly, did not greatly changed effects on type I collagen mRNA expression and stimulated osteopontin mRNA expression at 15 day especially. In conclusion, we suggests that IGF-I have a tendency of stimulation effect of DNA synthetic activity but do not stimulate type I collagen mRNA in proliferation stage of MC3T3-E1 cell cultures, and stimulate osteopontin mRNA in differentiation stage of MC3T3-E1 cell cultures.

  • PDF

Crosstalk between Adipocytes and Immune Cells in Adipose Tissue Inflammation and Metabolic Dysregulation in Obesity

  • Huh, Jin Young;Park, Yoon Jeong;Ham, Mira;Kim, Jae Bum
    • Molecules and Cells
    • /
    • v.37 no.5
    • /
    • pp.365-371
    • /
    • 2014
  • Recent findings, notably on adipokines and adipose tissue inflammation, have revised the concept of adipose tissues being a mere storage depot for body energy. Instead, adipose tissues are emerging as endocrine and immunologically active organs with multiple effects on the regulation of systemic energy homeostasis. Notably, compared with other metabolic organs such as liver and muscle, various inflammatory responses are dynamically regulated in adipose tissues and most of the immune cells in adipose tissues are involved in obesity-mediated metabolic complications, including insulin resistance. Here, we summarize recent findings on the key roles of innate (neutrophils, macrophages, mast cells, eosinophils) and adaptive (regulatory T cells, type 1 helper T cells, CD8 T cells, B cells) immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. In particular, the roles of natural killer T cells, one type of innate lymphocyte, in adipose tissue inflammation will be discussed. Finally, a new role of adipocytes as antigen presenting cells to modulate T cell activity and subsequent adipose tissue inflammation will be proposed.

T-Type Calcium Channels Are Required to Maintain Viability of Neural Progenitor Cells

  • Kim, Ji-Woon;Oh, Hyun Ah;Lee, Sung Hoon;Kim, Ki Chan;Eun, Pyung Hwa;Ko, Mee Jung;Gonzales, Edson Luck T.;Seung, Hana;Kim, Seonmin;Bahn, Geon Ho;Shin, Chan Young
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.439-445
    • /
    • 2018
  • T-type calcium channels are low voltage-activated calcium channels that evoke small and transient calcium currents. Recently, T-type calcium channels have been implicated in neurodevelopmental disorders such as autism spectrum disorder and neural tube defects. However, their function during embryonic development is largely unknown. Here, we investigated the function and expression of T-type calcium channels in embryonic neural progenitor cells (NPCs). First, we compared the expression of T-type calcium channel subtypes (CaV3.1, 3.2, and 3.3) in NPCs and differentiated neural cells (neurons and astrocytes). We detected all subtypes in neurons but not in astrocytes. In NPCs, CaV3.1 was the dominant subtype, whereas CaV3.2 was weakly expressed, and CaV3.3 was not detected. Next, we determined CaV3.1 expression levels in the cortex during early brain development. Expression levels of CaV3.1 in the embryonic period were transiently decreased during the perinatal period and increased at postnatal day 11. We then pharmacologically blocked T-type calcium channels to determine the effects in neuronal cells. The blockade of T-type calcium channels reduced cell viability, and induced apoptotic cell death in NPCs but not in differentiated astrocytes. Furthermore, blocking T-type calcium channels rapidly reduced AKT-phosphorylation (Ser473) and $GSK3{\beta}$-phosphorylation (Ser9). Our results suggest that T-type calcium channels play essential roles in maintaining NPC viability, and T-type calcium channel blockers are toxic to embryonic neural cells, and may potentially be responsible for neurodevelopmental disorders.

THE EFFECTS OF SODIUM FLUORIDE ON TYPE I $\alpha$ 2 COLLAGEN RIBONUCLEIC ACID (mRNA) LEVEL IN MURIN OSTEOBLAST LIKE (MC3T3-E1) CELLS (Sodium Fluoride가 조골세포주 MC3T3-E1의 제 1 형 ${\alpha}2$ 교원질 mRNA에 미치는 영향에 관한 연구)

  • Hwang, Jeung-Bin;Chung, Kyu-Rhim;Park, Young-Guk
    • The korean journal of orthodontics
    • /
    • v.23 no.3 s.42
    • /
    • pp.415-425
    • /
    • 1993
  • Fluoride is one of the most potent stimulators of bone formation in vivo. But its direct effects on osteoblast is not yet clear This study was to investigate the effects of Sodium fluoride on alkaline phosphatase(ALP) activity, cAMP formation responsive to parathormone(PTH) and type I $\alpha$ 2 collagen ribonucleic acid (mRNA) level in Murin osteoblast-like (MC3T3-E1) cells. The cells were cultured in $\alpha-Minimal$ essential medium $(\alpha-MEM)$ supplemente with $10\%$ fetal bovine serum (FBS) and then changed to $0.1\%$ FBS with various concentration of Sodium fluoride. The ALP activity was assayed by the method of Lowry with disodium phenyl phosphated as substrate. cAMP formation was measured by Radioimmuno Assay(RIA). Type I $\alpha$ 2 collagen ribonucleic acid(mRNA) expression was studied by Nothern blot analysis. The results were as follows: 1. cAMP level was increased by PTH in MC3T3-E1 cells. 2. Sodium fluoride showed the tendency of inhibitory effects on cAMP responsiveness to PTH in MC3T3-E1 cells. 3. Sodium fluoride increased ALP activity at cocentration of $2{\mu}M,\;4{\mu}M,\;and\;10{\mu}M$ significantly different from control at the 0.001 level. ALP activity revealed maximum value at $10{\mu}M$ in this study. 4. Nothern blot analysis of Sodium fluoride treated cells, using Type I $\alpha$ 2 collagen prove, revealed significant increase at $10{\mu}M$ in MC3T3-E1 cells.

  • PDF

Functions of Metallothionein Generating Interleukin-10-Producing Regulatory $CD4^{+}T$ Cells Potentiate Suppression of Collagen-Induced Arthritis

  • Huh, Sung-Jin;Lee, Kyu-Heon;Yun, Hye-Sun;Paik, Doo-Jin;Kim, Jung-Mogg;Youn, Jee-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.348-358
    • /
    • 2007
  • Metallothionein, a cysteine-rich stress response protein that is naturally induced by a variety of immunologic stressors, has been shown to suppress autoimmune disorders through mechanisms not yet fully defined. In the present study, we examined the underlying mechanisms by which metallothionein might mediate such regulation of autoimmunity. $Na\ddot{i}ve\;CD4^+$ T cells from metallothionein-deficient mice differentiated to produce significantly less IL-10, $TGF-{\gamma}$, and repressor of GATA, but more $IFN-{\gamma}$ and T-bet, when compared with those from wild-type mice. The levels of IL-4 and GATA-3 production were not different between the two groups of mice. Conversely, treatment with exogenous metallothionein during the priming phase drove $na\ddot{i}ve$ wild-type $CD4^+\;T$ cells to differentiate into cells producing more IL-10 and $TGF-{\beta}$, but less $IFN-{\gamma}$ than untreated cells. Metallothionein-primed cells were hyporesponsive to restimulation, and suppressive to T cell proliferation in an IL-10-dependent manner. Lymphocytes from metallothionein-deficient mice displayed significantly elevated levels of AP-1 and JNK activities in response to stimulation compared with those from wild-type controls. Importantly, transgenic mice overexpressing metallothionein exhibited significantly reduced susceptibility to collagen-induced arthritis and enhanced IL-10 level in the serum, relative to their nontransgenic littermates. Taken together, these data suggest that metallothionein is able to promote the generation of IL-10-and $TGF-{\beta}$-producing type 1 regulatory T-like cells by downregulating JNK-dependent AP-1 activity. Thus, metallothionein may play an important role in the regulation of Th1-dependent autoimmune arthritis, and may represent both a potential target for therapeutic manipulation and a critical element in the diagnostic assessment of disease potential.

Natural killer T cell and pathophysiology of asthma

  • Jang, Gwang Cheon
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.2
    • /
    • pp.136-145
    • /
    • 2010
  • Natural killer T (NKT) cell is a special type of T lymphocytes that has both receptor of natural killer (NK) cell (NK1.1, CD161c) and T cell (TCR) and express a conserved or invariant T cell receptor called $V{\alpha}14J{\alpha}18$ in mice or Va24 in humans. Invariant NKT (iNKT) cell recognizes lipid antigen presented by CD1d molecules. Marine-sponge-derived glycolipid, ${\alpha}-galactosylceremide$ (${\alpha}-GalCer$), binds CD1d at the cell surface of antigen-presenting cells and is presented to iNKT cells. Within hours, iNKT cells become activated and start to secrete Interleukin-4 and $interferon-{\gamma}$. NKT cell prevents autoimmune diseases, such as type 1 diabetes, experimental allergic encephalomyelitis, systemic lupus erythematous, inflammatory colitis, and Graves' thyroiditis, by activation with ${\alpha}-GalCer$. In addition, NKT cell is associated with infectious diseases by mycobacteria, leshmania, and virus. Moreover NKT cell is associated with asthma, especially CD4+ iNKT cells. In this review, I will discuss the characteristics of NKT cell and the association with inflammatory diseases, especially asthma.

The Inhibitory Effect of Leek (Buchu) Kimchi Extracts on MCA-induced Cytoxicity and Transformation in C3H-10T1/2 Cells

  • Jung, Keun-Ok;Park, Kun-Young
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.4
    • /
    • pp.255-259
    • /
    • 1999
  • The anticarcinogenic effects of the methanol extracts from leek (buchu in Korean) kimchi and Korean cabbage kimchi were evaluated using cytotoxicity and transformation tests in C3H/10T1/2 cells. Various fractions of the 6-day fermented leek kimchi at 15$^{\circ}C$, hexane, methanol soluble, dichloromethane, ethyl acetate, butanol and aqueous fraction, were also studied in the same system. The inhibitory effect of the leek kimchi(6-day fermented at 15$^{\circ}C$, pH 4.29) was higher than that of the Korean cabbage kimchi(4-day fermented at 15$^{\circ}C$, pH 4.21) on the cytotoxicity induced by 3-methylcholanthrane (MCA) in the C3H/10T1/2 cell system. While the MCA-treated culture(control) formed 21.0 foci of type II plus III in C3H/10T1/2 cells, 100$\mu\textrm{g}$/ml of the methanol extract of the leek kimchi and that of the 4-day fermented Korean cabbage kimchi treated cultures reduced the formation of type II plus III foci to 7.4 and 11.3, respectively. Among the fractions of the leek kimchi, the dichloromethane fraction showed the highest inhibitory effect on MCA-induced cytotoxicity in C3H/10T1/2 cells. Fifty $\mu\textrm{g}$/ml of dichloromethane fraction from the leek kimchi suppressed the MCA-induced cytotoxicity by 77%. On the transformation test using MCA, the dichloromethane fraction considerably reduced the formation of type II plus III foci, especially thpe III foci. When 50$\mu\textrm{g}$/ml of dichloromethane fraction from the leek kimchi was treated, the numbers of type III foci mediated by MCA were decreased to 1.7 compared to 10 for the control. These results indicate that leek kimchi has stronger anticarcinogenic effects than Korean cabbage kimchi and that the dichloromethane fraction of the leek kimchi may contain the major compound(s) that suppress the carcinogenesis in the eukaryotic cells.

  • PDF