Browse > Article
http://dx.doi.org/10.5483/BMBRep.2014.47.5.077

The effect of intracellular trafficking of CD1d on the formation of TCR repertoire of NKT cells  

Shin, Jung Hoon (Department of Life Sciences, Korea University)
Park, Se-Ho (Department of Life Sciences, Korea University)
Publication Information
BMB Reports / v.47, no.5, 2014 , pp. 241-248 More about this Journal
Abstract
CD1 molecules belong to non-polymorphic MHC class I-like proteins and present lipid antigens to T cells. Five different CD1 genes (CD1a-e) have been identified and classified into two groups. Group 1 include CD1a-c and present pathogenic lipid antigens to ${\alpha}{\beta}$ T cells reminiscence of peptide antigen presentation by MHC-I molecules. CD1d is the only member of Group 2 and presents foreign and self lipid antigens to a specialized subset of ${\alpha}{\beta}$ T cells, NKT cells. NKT cells are involved in diverse immune responses through prompt and massive production of cytokines. CD1d-dependent NKT cells are categorized upon the usage of their T cell receptors. A major subtype of NKT cells (type I) is invariant NKT cells which utilize invariant $V{\alpha}14-J{\alpha}18$ TCR alpha chain in mouse. The remaining NKT cells (type II) utilize diverse TCR alpha chains. Engineered CD1d molecules with modified intracellular trafficking produce either type I or type II NKT cell-defects suggesting the lipid antigens for each subtypes of NKT cells are processed/generated in different intracellular compartments. Since the usage of TCR by a T cell is the result of antigen-driven selection, the intracellular metabolic pathways of lipid antigen are a key in forming the functional NKT cell repertoire.
Keywords
Antigen presentation; CD1d; Endosome; Endolysosomal compartment; Glycolipid; Lysosome; NKT cells;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Shamshiev, A., Gober, H. J., Donda, A., Mazorra, Z., Mori, L. and De Libero, G. (2002) Presentation of the same glycolipid by different CD1 molecules. J. Exp. Med. 195, 1013-1021.   DOI
2 Porubsky, S., Speak, A. O., Luckow, B., Cerundolo, V., Platt, F. M. and Grone, H. J. (2007) Normal development and function of invariant natural killer T cells in mice with isoglobotrihexosylceramide (iGb3) deficiency. Proc. Natl. Acad. Sci. U. S. A. 104, 5977-5982.   DOI   ScienceOn
3 Gumperz, J. E., Roy, C., Makowska, A., Lum, D., Sugita, M., Podrebarac, T., Koezuka, Y., Porcelli, S. A., Cardell, S., Brenner, M. B. and Behar, S. M. (2000) Murine CD1d-restricted T cell recognition of cellular lipids. Immunity 12, 211-221.   DOI   ScienceOn
4 Jahng, A., Maricic, I., Aguilera, C., Cardell, S., Halder, R. C. and Kumar, V. (2004) Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide. J. Exp. Med. 199, 947-957.   DOI   ScienceOn
5 Arrenberg, P., Halder, R., Dai, Y., Maricic, I. and Kumar, V. (2010) Oligoclonality and innate-like features in the TCR repertoire of type II NKT cells reactive to a beta- linked self-glycolipid. Proc. Natl. Acad. Sci. U. S. A. 107, 10984-10989.   DOI   ScienceOn
6 Kang, S. J. and Cresswell, P. (2002) Calnexin, calreticulin, and ERp57 cooperate in disulfide bond formation in human CD1d heavy chain. J. Biol. Chem. 277, 44838-44844.   DOI   ScienceOn
7 Hughes, E. A. and Cresswell, P. (1998) The thiol oxidoreductase ERp57 is a component of the MHC class I peptide- loading complex. Current biology : CB 8, 709-712.   DOI
8 Morrice, N. A. and Powis, S. J. (1998) A role for the thiol- dependent reductase ERp57 in the assembly of MHC class I molecules. Current biology: CB 8, 713-716.   DOI
9 Dougan, S. K., Salas, A., Rava, P., Agyemang, A., Kaser, A., Morrison, J., Khurana, A., Kronenberg, M., Johnson, C., Exley, M., Hussain, M. M. and Blumberg, R. S. (2005) Microsomal triglyceride transfer protein lipidation and control of CD1d on antigen-presenting cells. J. Exp. Med. 202, 529-539.   DOI   ScienceOn
10 Lawton, A. P., Prigozy, T. I., Brossay, L., Pei, B., Khurana, A., Martin, D., Zhu, T., Spate, K., Ozga, M., Honing, S., Bakke, O. and Kronenberg, M. (2005) The mouse CD1d cytoplasmic tail mediates CD1d trafficking and antigen presentation by adaptor protein 3-dependent and -independent mechanisms. J. Immunol. 174, 3179-3186.   DOI
11 Cernadas, M., Sugita, M., van der Wel, N., Cao, X., Gumperz, J. E., Maltsev, S., Besra, G. S., Behar, S. M., Peters, P. J. and Brenner, M. B. (2003) Lysosomal localization of murine CD1d mediated by AP-3 is necessary for NK T cell development. J. Immunol. 171, 4149-4155.   DOI
12 Elewaut, D., Lawton, A. P., Nagarajan, N. A., Maverakis, E., Khurana, A., Honing, S., Benedict, C. A., Sercarz, E., Bakke, O., Kronenberg, M. and Prigozy, T. I. (2003) The adaptor protein AP-3 is required for CD1d-mediated antigen presentation of glycosphingolipids and development of Valpha14i NKT cells. J. Exp. Med. 198, 1133-1146.   DOI   ScienceOn
13 Prigozy, T. I., Naidenko, O., Qasba, P., Elewaut, D., Brossay, L., Khurana, A., Natori, T., Koezuka, Y., Kulkarni, A. and Kronenberg, M. (2001) Glycolipid antigen processing for presentation by CD1d molecules. Science 291, 664-667.   DOI   ScienceOn
14 Hiltbold, E. M. and Roche, P. A. (2002) Trafficking of MHC class II molecules in the late secretory pathway. Curr. Opin. Immunol. 14, 30-35.   DOI   ScienceOn
15 Salio, M., Ghadbane, H., Dushek, O., Shepherd, D., Cypen, J., Gileadi, U., Aichinger, M. C., Napolitani, G., Qi, X., van der Merwe, P. A., Wojno, J., Veerapen, N., Cox, L. R., Besra, G. S., Yuan, W., Cresswell, P. and Cerundolo, V. (2013) Saposins modulate human invariant Natural Killer T cells self-reactivity and facilitate lipid exchange with CD1d molecules during antigen presentation. Proc. Natl. Acad. Sci. U. S. A. 110, E4753-4761.   DOI   ScienceOn
16 Kang, S. J. and Cresswell, P. (2004) Saposins facilitate CD1d-restricted presentation of an exogenous lipid antigen to T cells. Nat. Immunol. 5, 175-181.
17 Zhou, D., Cantu, C., 3rd, Sagiv, Y., Schrantz, N., Kulkarni, A. B., Qi, X., Mahuran, D. J., Morales, C. R., Grabowski, G. A., Benlagha, K., Savage, P., Bendelac, A. and Teyton, L. (2004) Editing of CD1d-bound lipid antigens by endosomal lipid transfer proteins. Science 303, 523-527.   DOI   ScienceOn
18 Sugita, M., Cao, X., Watts, G. F., Rogers, R. A., Bonifacino, J. S. and Brenner, M. B. (2002) Failure of trafficking and antigen presentation by CD1 in AP-3-deficient cells. Immunity 16, 697-706.   DOI   ScienceOn
19 Jayawardena-Wolf, J., Benlagha, K., Chiu, Y. H., Mehr, R. and Bendelac, A. (2001) CD1d endosomal trafficking is independently regulated by an intrinsic CD1d-encoded tyrosine motif and by the invariant chain. Immunity 15, 897-908.   DOI   ScienceOn
20 Porcelli, S. A. (1995) The CD1 family: a third lineage of antigen-presenting molecules. Adv. Immunol. 59, 1-98.   DOI
21 Calabi, F., Jarvis, J. M., Martin, L. and Milstein, C. (1989) Two classes of CD1 genes. Eur. J. Immunol. 19, 285-292.   DOI   ScienceOn
22 de la Salle, H., Mariotti, S., Angenieux, C., Gilleron, M., Garcia-Alles, L. F., Malm, D., Berg, T., Paoletti, S., Maitre, B., Mourey, L., Salamero, J., Cazenave, J. P., Hanau, D., Mori, L., Puzo, G. and De Libero, G. (2005) Assistance of microbial glycolipid antigen processing by CD1e. Science 310, 1321-1324.   DOI   ScienceOn
23 Moody, D. B., Young, D. C., Cheng, T. Y., Rosat, J. P., Roura-Mir, C., O'Connor, P. B., Zajonc, D. M., Walz, A., Miller, M. J., Levery, S. B., Wilson, I. A., Costello, C. E. and Brenner, M. B. (2004) T cell activation by lipopeptide antigens. Science 303, 527-531.   DOI   ScienceOn
24 Beckman, E. M., Porcelli, S. A., Morita, C. T., Behar, S. M., Furlong, S. T. and Brenner, M. B. (1994) Recognition of a lipid antigen by CD1-restricted alpha beta+ T cells. Nature 372, 691-694.   DOI   ScienceOn
25 Sieling, P. A., Chatterjee, D., Porcelli, S. A., Prigozy, T. I., Mazzaccaro, R. J., Soriano, T., Bloom, B. R., Brenner, M. B., Kronenberg, M., Brennan, P. J. and Modlin, R. L. (1995) CD1-restricted T cell recognition of microbial lipoglycan antigens. Science 269, 227-230.   DOI
26 Shamshiev, A., Donda, A., Prigozy, T. I., Mori, L., Chigorno, V., Benedict, C. A., Kappos, L., Sonnino, S., Kronenberg, M. and De Libero, G. (2000) The alphabeta T cell response to self-glycolipids shows a novel mechanism of CD1b loading and a requirement for complex oligosaccharides. Immunity 13, 255-264.   DOI   ScienceOn
27 Im, J. S., Arora, P., Bricard, G., Molano, A., Venkataswamy, M. M., Baine, I., Jerud, E. S., Goldberg, M. F., Baena, A., Yu, K. O., Ndonye, R. M., Howell, A. R., Yuan, W., Cresswell, P., Chang, Y. T., Illarionov, P. A., Besra, G. S. and Porcelli, S. A. (2009) Kinetics and cellular site of glycolipid loading control the outcome of natural killer T cell activation. Immunity 30, 888-898.   DOI   ScienceOn
28 Chiu, Y. H., Jayawardena, J., Weiss, A., Lee, D., Park, S. H., Dautry-Varsat, A. and Bendelac, A. (1999) Distinct subsets of CD1d-restricted T cells recognize self-antigens loaded in different cellular compartments. J. Exp. Med. 189, 103-110.   DOI
29 Chiu, Y. H., Park, S. H., Benlagha, K., Forestier, C., Jayawardena-Wolf, J., Savage, P. B., Teyton, L. and Bendelac, A. (2002) Multiple defects in antigen presentation and T cell development by mice expressing cytoplasmic tail-truncated CD1d. Nat. Immunol. 3, 55-60.   DOI   ScienceOn
30 Bai, L., Sagiv, Y., Liu, Y., Freigang, S., Yu, K. O., Teyton, L., Porcelli, S. A., Savage, P. B. and Bendelac, A. (2009) Lysosomal recycling terminates CD1d-mediated presentation of short and polyunsaturated variants of the NKT cell lipid antigen alphaGalCer. Proc. Natl. Acad. Sci. U. S. A. 106, 10254-10259.   DOI   ScienceOn
31 Shin, J. H., Park, J. Y., Shin, Y. H., Lee, H., Park, Y. K., Jung, S. and Park, S. H. (2012) Mutation of a positively charged cytoplasmic motif within CD1d results in multiple defects in antigen presentation to NKT cells. J. Immunol. 188, 2235-2243.   DOI   ScienceOn
32 Kang, S. J. and Cresswell, P. (2002) Regulation of intracellular trafficking of human CD1d by association with MHC class II molecules. EMBO J. 21, 1650-1660.   DOI   ScienceOn
33 Kawano, T., Cui, J., Koezuka, Y., Toura, I., Kaneko, Y., Motoki, K., Ueno, H., Nakagawa, R., Sato, H., Kondo, E., Koseki, H. and Taniguchi, M. (1997) CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 278, 1626-1629.   DOI   ScienceOn
34 Moody, D. B., Ulrichs, T., Muhlecker, W., Young, D. C., Gurcha, S. S., Grant, E., Rosat, J. P., Brenner, M. B., Costello, C. E., Besra, G. S. and Porcelli, S. A. (2000) CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature 404, 884-888.   DOI   ScienceOn
35 Matsunaga, I., Bhatt, A., Young, D. C., Cheng, T. Y., Eyles, S. J., Besra, G. S., Briken, V., Porcelli, S. A., Costello, C. E., Jacobs, W. R., Jr. and Moody, D. B. (2004) Mycobacterium tuberculosis pks12 produces a novel polyketide presented by CD1c to T cells. J. Exp. Med. 200, 1559-1569.   DOI   ScienceOn
36 Wu, D. Y., Segal, N. H., Sidobre, S., Kronenberg, M. and Chapman, P. B. (2003) Cross-presentation of disialoganglioside GD3 to natural killer T cells. J. Exp. Med. 198, 173-181.   DOI   ScienceOn
37 Bendelac, A., Savage, P. B. and Teyton, L. (2007) The biology of NKT cells. Annu. Rev. Immunol. 25, 297-336.   DOI   ScienceOn
38 Borg, N. A., Wun, K. S., Kjer-Nielsen, L., Wilce, M. C., Pellicci, D. G., Koh, R., Besra, G. S., Bharadwaj, M., Godfrey, D. I., McCluskey, J. and Rossjohn, J. (2007) CD1d-lipid-antigen recognition by the semi-invariant NKT T-cell receptor. Nature 448, 44-49.   DOI   ScienceOn
39 Geissmann, F., Cameron, T. O., Sidobre, S., Manlongat, N., Kronenberg, M., Briskin, M. J., Dustin, M. L. and Littman, D. R. (2005) Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol. 3, e113.   DOI   ScienceOn
40 Hong, S., Wilson, M. T., Serizawa, I., Wu, L., Singh, N., Naidenko, O. V., Miura, T., Haba, T., Scherer, D. C., Wei, J., Kronenberg, M., Koezuka, Y. and Van Kaer, L. (2001) The natural killer T-cell ligand alpha-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nat. Med. 7, 1052-1056.   DOI   ScienceOn
41 Kim, H. Y., Kim, H. J., Min, H. S., Kim, S., Park, W. S., Park, S. H. and Chung, D. H. (2005) NKT cells promote antibody-induced joint inflammation by suppressing transforming growth factor beta1 production. J. Exp. Med. 201, 41-47.   DOI   ScienceOn
42 Hong, C. and Park, S. H. (2007) Application of natural killer T cells in antitumor immunotherapy. Crit. Rev. Immunol. 27, 511-525.   DOI
43 Blomqvist, M., Rhost, S., Teneberg, S., Lofbom, L., Osterbye, T., Brigl, M., Mansson, J. E. and Cardell, S. L. (2009) Multiple tissue-specific isoforms of sulfatide activate CD1d-restricted type II NKT cells. Eur. J. Immunol. 39, 1726-1735.   DOI   ScienceOn
44 Thomas, S. Y., Scanlon, S. T., Griewank, K. G., Constantinides, M. G., Savage, A. K., Barr, K. A., Meng, F., Luster, A. D. and Bendelac, A. (2011) PLZF induces an intravascular surveillance program mediated by long-lived LFA-1-ICAM-1 interactions. J. Exp. Med. 208, 1179-1188.   DOI   ScienceOn
45 Halder, R. C., Aguilera, C., Maricic, I. and Kumar, V. (2007) Type II NKT cell-mediated anergy induction in type I NKT cells prevents inflammatory liver disease. J. Clin. Invest. 117, 2302-2312.   DOI   ScienceOn
46 Ohteki, T., Maki, C., Koyasu, S., Mak, T. W. and Ohashi, P. S. (1999) Cutting edge: LFA-1 is required for liver NK1.1+TCR alpha beta+ cell development: evidence that liver NK1.1+TCR alpha beta+ cells originate from multiple pathways. J. Immunol. 162, 3753-3756.
47 Ambrosino, E., Terabe, M., Halder, R. C., Peng, J., Takaku, S., Miyake, S., Yamamura, T., Kumar, V. and Berzofsky, J. A. (2007) Cross-regulation between type I and type II NKT cells in regulating tumor immunity: a new immunoregulatory axis. J. Immunol. 179, 5126-5136.   DOI
48 Lu, X., Song, L., Metelitsa, L. S. and Bittman, R. (2006) Synthesis and evaluation of an alpha-C-galactosylceramide analogue that induces Th1-biased responses in human natural killer T cells. Chembiochem 7, 1750-1756.   DOI   ScienceOn
49 Wipf, P. and Pierce, J. G. (2006) Expedient synthesis of the alpha-C-glycoside analogue of the immunostimulant galactosylceramide (KRN7000). Org. Lett. 8, 3375-3378.   DOI   ScienceOn
50 Yang, G., Schmieg, J., Tsuji, M. and Franck, R. W. (2004) The C-glycoside analogue of the immunostimulant alpha- galactosylceramide (KRN7000): synthesis and striking enhancement of activity. Angew. Chem. Int. Ed. Engl. 43, 3818-3822.   DOI   ScienceOn
51 Schmieg, J., Yang, G., Franck, R. W. and Tsuji, M. (2003) Superior protection against malaria and melanoma metastases by a C-glycoside analogue of the natural killer T cell ligand alpha-Galactosylceramide. J. Exp. Med. 198, 1631-1641.   DOI   ScienceOn
52 Oki, S., Tomi, C., Yamamura, T. and Miyake, S. (2005) Preferential T(h)2 polarization by OCH is supported by incompetent NKT cell induction of CD40L and following production of inflammatory cytokines by bystander cells in vivo. Int. Immunol. 17, 1619-1629.   DOI   ScienceOn
53 Kinjo, Y., Tupin, E., Wu, D., Fujio, M., Garcia-Navarro, R., Benhnia, M. R., Zajonc, D. M., Ben-Menachem, G., Ainge, G. D., Painter, G. F., Khurana, A., Hoebe, K., Behar, S. M., Beutler, B., Wilson, I. A., Tsuji, M., Sellati, T. J., Wong, C. H. and Kronenberg, M. (2006) Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat. Immunol. 7, 978-986.   DOI   ScienceOn
54 Kinjo, Y., Wu, D., Kim, G., Xing, G. W., Poles, M. A., Ho, D. D., Tsuji, M., Kawahara, K., Wong, C. H. and Kronenberg, M. (2005) Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434, 520-525.   DOI   ScienceOn
55 Mattner, J., Debord, K. L., Ismail, N., Goff, R. D., Cantu, C., 3rd, Zhou, D., Saint-Mezard, P., Wang, V., Gao, Y., Yin, N., Hoebe, K., Schneewind, O., Walker, D., Beutler, B., Teyton, L., Savage, P. B. and Bendelac, A. (2005) Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434, 525-529.   DOI   ScienceOn
56 Exley, M., Garcia, J., Balk, S. P. and Porcelli, S. (1997) Requirements for CD1d recognition by human invariant Valpha24+ CD4-CD8- T cells. J. Exp. Med. 186, 109-120.   DOI
57 Amprey, J. L., Im, J. S., Turco, S. J., Murray, H. W., Illarionov, P. A., Besra, G. S., Porcelli, S. A. and Spath, G. F. (2004) A subset of liver NK T cells is activated during Leishmania donovani infection by CD1d-bound lipophosphoglycan. J. Exp. Med. 200, 895-904.   DOI   ScienceOn
58 Bendelac, A. (1995) Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J. Exp. Med. 182, 2091-2096.   DOI   ScienceOn
59 Bendelac, A. (1995) CD1: presenting unusual antigens to unusual T lymphocytes. Science 269, 185-186.   DOI
60 Bendelac, A., Killeen, N., Littman, D. R. and Schwartz, R. H. (1994) A subset of CD4+ thymocytes selected by MHC class I molecules. Science 263, 1774-1778.   DOI
61 Zhang, G., Nie, H., Yang, J., Ding, X., Huang, Y., Yu, H., Li, R., Yuan, Z. and Hu, S. (2011) Sulfatide-activated type II NKT cells prevent allergic airway inflammation by inhibiting type I NKT cell function in a mouse model of asthma. Am. J. Physiol. Lung Cell Mol. Physiol. 301, L975-984.   DOI
62 Yu, K. O., Im, J. S., Molano, A., Dutronc, Y., Illarionov, P. A., Forestier, C., Fujiwara, N., Arias, I., Miyake, S., Yamamura, T., Chang, Y. T., Besra, G. S. and Porcelli, S. A. (2005) Modulation of CD1d-restricted NKT cell responses by using N-acyl variants of alpha-galactosylceramides. Proc. Natl. Acad. Sci. U. S. A. 102, 3383-3388.   DOI   ScienceOn
63 Zhou, D., Mattner, J., Cantu, C., 3rd, Schrantz, N., Yin, N., Gao, Y., Sagiv, Y., Hudspeth, K., Wu, Y. P., Yamashita, T., Teneberg, S., Wang, D., Proia, R. L., Levery, S. B., Savage, P. B., Teyton, L. and Bendelac, A. (2004) Lysosomal glycosphingolipid recognition by NKT cells. Science 306, 1786-1789.   DOI   ScienceOn
64 Facciotti, F., Ramanjaneyulu, G. S., Lepore, M., Sansano, S., Cavallari, M., Kistowska, M., Forss-Petter, S., Ni, G., Colone, A., Singhal, A., Berger, J., Xia, C., Mori, L. and De Libero, G. (2012) Peroxisome-derived lipids are self antigens that stimulate invariant natural killer T cells in the thymus. Nat. Immunol. 13, 474-480.   DOI   ScienceOn
65 Brozovic, S., Nagaishi, T., Yoshida, M., Betz, S., Salas, A., Chen, D., Kaser, A., Glickman, J., Kuo, T., Little, A., Morrison, J., Corazza, N., Kim, J. Y., Colgan, S. P., Young, S. G., Exley, M. and Blumberg, R. S. (2004) CD1d function is regulated by microsomal triglyceride transfer protein. Nat. Med. 10, 535-539.   DOI   ScienceOn
66 Jung, S., Shin, H. S., Hong, C., Lee, H., Park, Y. K., Shin, J. H., Hong, S., Lee, G. R. and Park, S. H. (2009) Natural killer T cells promote collagen-induced arthritis in DBA/1 mice. Biochem. Biophys. Res. Commun. 390, 399-403.   DOI   ScienceOn
67 Barral, D. C. and Brenner, M. B. (2007) CD1 antigen presentation: how it works. Nat. Rev. Immunol. 7, 929-941.   DOI   ScienceOn
68 Brigl, M. and Brenner, M. B. (2004) CD1: antigen presentation and T cell function. Annu. Rev. Immunol. 22, 817-890.   DOI   ScienceOn
69 Rock, K. L., York, I. A., Saric, T. and Goldberg, A. L. (2002) Protein degradation and the generation of MHC class I-presented peptides. Adv. Immunol. 80, 1-70.   DOI
70 Zeng, Z., Castano, A. R., Segelke, B. W., Stura, E. A., Peterson, P. A. and Wilson, I. A. (1997) Crystal structure of mouse CD1: An MHC-like fold with a large hydrophobic binding groove. Science 277, 339-345.   DOI   ScienceOn
71 Yuan, W., Qi, X., Tsang, P., Kang, S. J., Illarionov, P. A., Besra, G. S., Gumperz, J. and Cresswell, P. (2007) Saposin B is the dominant saposin that facilitates lipid binding to human CD1d molecules. Proc. Natl. Acad. Sci. U. S. A. 104, 5551-5556.   DOI   ScienceOn