Browse > Article
http://dx.doi.org/10.4062/biomolther.2017.223

T-Type Calcium Channels Are Required to Maintain Viability of Neural Progenitor Cells  

Kim, Ji-Woon (Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University)
Oh, Hyun Ah (Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University)
Lee, Sung Hoon (College of Pharmacy, Chung-Ang University)
Kim, Ki Chan (KU Open Innovation Center and IBST, Konkuk University)
Eun, Pyung Hwa (Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University)
Ko, Mee Jung (Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University)
Gonzales, Edson Luck T. (Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University)
Seung, Hana (Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University)
Kim, Seonmin (Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University)
Bahn, Geon Ho (Department of Neuropsychiatry, School of Medicine, Kyung Hee University)
Shin, Chan Young (Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University)
Publication Information
Biomolecules & Therapeutics / v.26, no.5, 2018 , pp. 439-445 More about this Journal
Abstract
T-type calcium channels are low voltage-activated calcium channels that evoke small and transient calcium currents. Recently, T-type calcium channels have been implicated in neurodevelopmental disorders such as autism spectrum disorder and neural tube defects. However, their function during embryonic development is largely unknown. Here, we investigated the function and expression of T-type calcium channels in embryonic neural progenitor cells (NPCs). First, we compared the expression of T-type calcium channel subtypes (CaV3.1, 3.2, and 3.3) in NPCs and differentiated neural cells (neurons and astrocytes). We detected all subtypes in neurons but not in astrocytes. In NPCs, CaV3.1 was the dominant subtype, whereas CaV3.2 was weakly expressed, and CaV3.3 was not detected. Next, we determined CaV3.1 expression levels in the cortex during early brain development. Expression levels of CaV3.1 in the embryonic period were transiently decreased during the perinatal period and increased at postnatal day 11. We then pharmacologically blocked T-type calcium channels to determine the effects in neuronal cells. The blockade of T-type calcium channels reduced cell viability, and induced apoptotic cell death in NPCs but not in differentiated astrocytes. Furthermore, blocking T-type calcium channels rapidly reduced AKT-phosphorylation (Ser473) and $GSK3{\beta}$-phosphorylation (Ser9). Our results suggest that T-type calcium channels play essential roles in maintaining NPC viability, and T-type calcium channel blockers are toxic to embryonic neural cells, and may potentially be responsible for neurodevelopmental disorders.
Keywords
T-type calcium channel; Neural progenitor cells; AKT; $GSK3{\beta}$; Apoptosis; Toxicity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Splawski, I., Yoo, D. S., Stotz, S. C., Cherry, A., Clapham, D. E. and Keating, M. T. (2006) CACNA1H mutations in autism spectrum disorders. J. Biol. Chem. 281, 22085-22091.   DOI
2 Strom, S. P., Stone, J. L., Ten Bosch, J. R., Merriman, B., Cantor, R. M., Geschwind, D. H. and Nelson, S. F. (2010) High-density SNP association study of the 17q21 chromosomal region linked to autism identifies CACNA1G as a novel candidate gene. Mol. Psychiatry 15, 996-1005.   DOI
3 Taylor, J. T., Huang, L., Pottle, J. E., Liu, K., Yang, Y., Zeng, X., Keyser, B. M., Agrawal, K. C., Hansen, J. B. and Li, M. (2008) Selective blockade of T-type Ca2+ channels suppresses human breast cancer cell proliferation. Cancer Lett. 267, 116-124.   DOI
4 Valerie, N. C., Dziegielewska, B., Hosing, A. S., Augustin, E., Gray, L. S., Brautigan, D. L., Larner, J. M. and Dziegielewski, J. (2013) Inhibition of T-type calcium channels disrupts Akt signaling and promotes apoptosis in glioblastoma cells. Biochem. Pharmacol. 85, 888-897.   DOI
5 Viana, F., Van den Bosch, L., Missiaen, L., Vandenberghe, W., Droogmans, G., Nilius, B. and Robberecht, W. (1997) Mibefradil (Ro 40-5967) blocks multiple types of voltage-gated calcium channels in cultured rat spinal motoneurones. Cell Calcium 22, 299-311.   DOI
6 Watanabe, M., Ueda, T., Shibata, Y., Kumamoto, N., Shimada, S. and Ugawa, S. (2015) Expression and regulation of Cav3.2 T-type calcium channels during inflammatory hyperalgesia in mouse dorsal root ganglion neurons. PLoS ONE 10, e0127572.   DOI
7 Westmark, C. J. and Malter, J. S. (2007) FMRP mediates mGluR5-dependent translation of amyloid precursor protein. PLoS Biol. 5, e52.   DOI
8 Abdul-Wajid, S., Morales-Diaz, H., Khairallah, S. M. and Smith, W. C. (2015) T-type calcium channel regulation of neural tube closure and EphrinA/EPHA expression. Cell Rep. 13, 829-839.   DOI
9 Wu, S., Zhang, M., Vest, P. A., Bhattacharjee, A., Liu, L. and Li, M. (2000) A mibefradil metabolite is a potent intracellular blocker of L-type Ca(2+) currents in pancreatic beta-cells. J. Pharmacol. Exp. Ther. 292, 939-943.
10 Xiang, Z., Thompson, A. D., Brogan, J. T., Schulte, M. L., Melancon, B. J., Mi, D., Lewis, L. M., Zou, B., Yang, L., Morrison, R., Santomango, T., Byers, F., Brewer, K., Aldrich, J. S., Yu, H., Dawson, E. S., Li, M., McManus, O., Jones, C. K., Daniels, J. S., Hopkins, C. R., Xie, X. S., Conn, P. J., Weaver, C. D. and Lindsley, C. W. (2011) The discovery and characterization of ML218: a novel, centrally active T-type calcium channel inhibitor with robust effects in STN neurons and in a rodent model of Parkinson's disease. ACS Chem. Neurosci. 2, 730-742.   DOI
11 Chen, W. K., Liu, I. Y., Chang, Y. T., Chen, Y. C., Chen, C. C., Yen, C. T., Shin, H. S. and Chen, C. C. (2010) Ca(v)3.2 T-type Ca2+ channel-dependent activation of ERK in paraventricular thalamus modulates acid-induced chronic muscle pain. J. Neurosci. 30, 10360-10368.   DOI
12 Assandri, R., Egger, M., Gassmann, M., Niggli, E., Bauer, C., Forster, I. and Gorlach, A. (1999) Erythropoietin modulates intracellular calcium in a human neuroblastoma cell line. J. Physiol. 516, 343-352.   DOI
13 Cazade, M., Bidaud, I., Lory, P. and Chemin, J. (2017) Activity-dependent regulation of T-type calcium channels by submembrane calcium ions. Elife 6, e22331.   DOI
14 Chemin, J., Monteil, A., Briquaire, C., Richard, S., Perez-Reyes, E., Nargeot, J. and Lory, P. (2000) Overexpression of T-type calcium channels in HEK-293 cells increases intracellular calcium without affecting cellular proliferation. FEBS Lett. 478, 166-172.   DOI
15 Cheong, E. and Shin, H. S. (2013) T-type Ca2+ channels in normal and abnormal brain functions. Physiol. Rev. 93, 961-992.   DOI
16 Coulon, P., Herr, D., Kanyshkova, T., Meuth, P., Budde, T. and Pape, H. C. (2009) Burst discharges in neurons of the thalamic reticular nucleus are shaped by calcium-induced calcium release. Cell Calcium 46, 333-346.   DOI
17 D'Ascenzo, M., Piacentini, R., Casalbore, P., Budoni, M., Pallini, R., Azzena, G. B. and Grassi, C. (2006) Role of L-type Ca2+ channels in neural stem/progenitor cell differentiation. Eur. J. Neurosci. 23, 935-944.   DOI
18 Dziegielewska, B., Gray, L. S. and Dziegielewski, J. (2014b) T-type calcium channels blockers as new tools in cancer therapies. Pflugers Arch. 466, 801-810.   DOI
19 Zamponi, G. W. (2016) Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat. Rev. Drug Discov. 15, 19-34.   DOI
20 Dziegielewska, B., Brautigan, D. L., Larner, J. M. and Dziegielewski, J. (2014a) T-type Ca2+ channel inhibition induces p53-dependent cell growth arrest and apoptosis through activation of p38-MAPK in colon cancer cells. Mol. Cancer Res. 12, 348-358.   DOI
21 Franke, T. F., Hornik, C. P., Segev, L., Shostak, G. A. and Sugimoto, C. (2003) PI3K/Akt and apoptosis: size matters. Oncogene 22, 8983-8998.   DOI
22 Huang, L., Keyser, B. M., Tagmose, T. M., Hansen, J. B., Taylor, J. T., Zhuang, H., Zhang, M., Ragsdale, D. S. and Li, M. (2004) NNC 55-0396 [(1S,2S)-2-(2-(N-[(3-benzimidazol-2-yl)propyl]-N-methylamino) ethyl)-6-fluoro-1,2, 3,4-tetrahydro-1-isopropyl-2-naphtyl cyclopropanecarboxylate dihydrochloride]: a new selective inhibitor of T-type calcium channels. J. Pharmacol. Exp. Ther. 309, 193-199.   DOI
23 Go, H. S., Kim, K. C., Choi, C. S., Jeon, S. J., Kwon, K. J., Han, S. H., Lee, J., Cheong, J. H., Ryu, J. H., Kim, C. H., Ko, K. H. and Shin, C. Y. (2012) Prenatal exposure to valproic acid increases the neural progenitor cell pool and induces macrocephaly in rat brain via a mechanism involving the GSK-3beta/beta-catenin pathway. Neuropharmacology 63, 1028-1041.   DOI
24 Harraz, O. F., Brett, S. E., Zechariah, A., Romero, M., Puglisi, J. L., Wilson, S. M. and Welsh, D. G. (2015) Genetic ablation of CaV3.2 channels enhances the arterial myogenic response by modulating the RyR-BKCa axis. Arterioscler. Thromb. Vasc. Biol. 35, 1843-1851.   DOI
25 Hirooka, K., Bertolesi, G. E., Kelly, M. E., Denovan-Wright, E. M., Sun, X., Hamid, J., Zamponi, G. W., Juhasz, A. E., Haynes, L. W. and Barnes, S. (2002) T-type calcium channel alpha1G and alpha1H subunits in human retinoblastoma cells and their loss after differentiation. J. Neurophysiol. 88, 196-205.   DOI
26 Kim, D., Song, I., Keum, S., Lee, T., Jeong, M. J., Kim, S. S., McEnery, M. W. and Shin, H. S. (2001) Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking alpha(1G) T-type Ca(2+) channels. Neuron 31, 35-45.   DOI
27 Huang, W., Lu, C., Wu, Y., Ouyang, S. and Chen, Y. (2015) T-type calcium channel antagonists, mibefradil and NNC-55-0396 inhibit cell proliferation and induce cell apoptosis in leukemia cell lines. J. Exp. Clin. Cancer Res. 34, 54.   DOI
28 Iftinca, M. C. and Zamponi, G. W. (2009) Regulation of neuronal T-type calcium channels. Trends Pharmacol. Sci. 30, 32-40.   DOI
29 Jacobs, K. M., Bhave, S. R., Ferraro, D. J., Jaboin, J. J., Hallahan, D. E. and Thotala, D. (2012) GSK-3beta: a bifunctional role in cell death pathways. Int. J. Cell Biol. 2012, 930710.
30 Kim, J. W., Lee, S. H., Ko, H. M., Kwon, K. J., Cho, K. S., Choi, C. S., Park, J. H., Kim, H. Y., Lee, J., Han, S. H., Ignarro, L. J., Cheong, J. H., Kim, W. K. and Shin, C. Y. (2011) Biphasic regulation of tissue plasminogen activator activity in ischemic rat brain and in cultured neural cells: essential role of astrocyte-derived plasminogen activator inhibitor-1. Neurochem. Int. 58, 423-433.   DOI
31 Kitchens, S. A., Burch, J. and Creazzo, T. L. (2003) T-type Ca2+ current contribution to Ca2+-induced Ca2+ release in developing myocardium. J. Mol. Cell. Cardiol. 35, 515-523.   DOI
32 Kopecky, B. J., Liang, R. and Bao, J. (2014) T-type calcium channel blockers as neuroprotective agents. Pflugers Arch. 466, 757-765.   DOI
33 Perez-Reyes, E. (2003) Molecular physiology of low-voltage-activated T-type calcium channels. Physiol. Rev. 83, 117-161.   DOI
34 Lee, J. H., Gomora, J. C., Cribbs, L. L. and Perez-Reyes, E. (1999) Nickel block of three cloned T-type calcium channels: low concentrations selectively block alpha1H. Biophys. J. 77, 3034-3042.   DOI
35 Martin, R. L., Lee, J. H., Cribbs, L. L., Perez-Reyes, E. and Hanck, D. A. (2000) Mibefradil block of cloned T-type calcium channels. J. Pharmacol. Exp. Ther. 295, 302-308.
36 Oguri, A., Tanaka, T., Iida, H., Meguro, K., Takano, H., Oonuma, H., Nishimura, S., Morita, T., Yamasoba, T., Nagai, R. and Nakajima, T. (2010) Involvement of CaV3.1 T-type calcium channels in cell proliferation in mouse preadipocytes. Am. J. Physiol. Cell Physiol. 298, C1414-C1423.   DOI
37 Panner, A., Cribbs, L. L., Zainelli, G. M., Origitano, T. C., Singh, S. and Wurster, R. D. (2005) Variation of T-type calcium channel protein expression affects cell division of cultured tumor cells. Cell Calcium 37, 105-119.   DOI
38 Panner, A. and Wurster, R. D. (2006) T-type calcium channels and tumor proliferation. Cell Calcium. 40, 253-259.   DOI
39 Rodriguez-Gomez, J. A., Levitsky, K. L. and Lopez-Barneo, J. (2012) T-type Ca2+ channels in mouse embryonic stem cells: modulation during cell cycle and contribution to self-renewal. Am. J. Physiol. Cell Physiol. 302, C494-504.   DOI
40 Rossier, M. F. (2016) T-type calcium channel: a privileged gate for calcium entry and control of adrenal steroidogenesis. Front. Endocrinol. (Lausanne) 7, 43.