• 제목/요약/키워드: two-way coupling

검색결과 84건 처리시간 0.024초

협조제어에 의한 2축 연속 회전시스템의 고정도 위치동기 제어 (Precise Position Synchronous Control of Two Axes Rotating Systems by Cooperative Control)

  • 정석권;김영진;유삼상
    • 대한기계학회논문집A
    • /
    • 제25권12호
    • /
    • pp.2078-2090
    • /
    • 2001
  • This paper deals with a precise position synchronous control by a cooperative control method of two axes rotating systems. First, the system's dynamics including motor drives described by a motor circuit equation and Newton's kinetic formulation about rotating system. Next, based on conventional PID(Proportional, Integral, Derivative) control law, current and speed controller are designed very simply to follow up reference speed correctly under some disturbances. Also, position synchronous controller designed to minimize position errors according to integration of speed errors between two motors. Then, the proposed control enables the distributed drives by a software control algorithm to behave in a way as if they are mechanically hard coupled in axes. Further, the stabilities and robustness or the proposed system are investigated. Finally, the proposed system presented here is shown to be more precise position synchronous motion than conventional systems through some simulations and experiments.

Fabrication of 3D Feed Horn IR Antenna for IR Detector

  • Kim, Kun-Tae;Han, Yong-Hee;Shin, Hyun-Joon;Sung Moon;Park, Jung-Ho
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제4C권4호
    • /
    • pp.170-175
    • /
    • 2004
  • A three dimensional feed horn 10${\mu}{\textrm}{m}$ wavelength infrared antenna has been suggested, fabricated and characterized. It was applied to an infrared detector for efficient collecting of IR radiation and for reducing background noise. The horn antenna size was designed for maximum antenna directivity. The 3D feed horn antenna mold was fabricated using rotating and tilted illumination while the antenna plate was constructed by way of electroplating. Antenna characteristics were measured by coupling with a microbolometer. Measurement results indicated that the directivity of the antenna is 16.1㏈ and the background noise is reduced by approximately two times.

Zn(II)porphyrin Helical Arrays: A Strategy to Overcome Conformational Heterogeneity by Host-Guest Chemistry

  • Yoon, Zin-Seok;Easwaramoorthi, Shanmugam;Kim, Dong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권1호
    • /
    • pp.197-201
    • /
    • 2008
  • Conformational heterogeneity of directly linked multiporphyrin arrays with larger molecular length retards their utilities in practical applications such as two-photon absorption and molecular photonic wire. In this regard, here we adopted a way to overcome the conformational heterogeneity through hydrogen bonding by selective binding of meso aryl substituents of porphyrins (host) with urea (guest) to form helical structure. Using steady-state and time-resolved spectroscopy, we observed the enhanced fluorescence quantum yield by ~1.8 to 2.4 times, enhanced anisotropy values and the disappearance of fast fluorescence decay component in the host-guest helical forms. In addition, the enhanced nonlinear optical responses of helical arrays infer the extended inter-porphyrin electronic coupling due to a significant change in dihedral angle between the neighboring porphyrin moieties. The current host-guest strategy will provide a guideline to improve the structural homogeneity of the photonic wire.

Structure of Particle Clusters Formed in Gas-Solid flows

  • Tanaka, Toshitsugu;Ito, Akihito;Tsuji, Takuya
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.26-27
    • /
    • 2006
  • Characteristics of spatial structure of particle clusters are investigated by using the flow field data obtained from three-dimensional numerical simulations. Eulerian/Lagrangian approach with two-way coupling is applied and individual particle-particle collisions are taken into account by using the hard-sphere model. More than 16 million particles are traced in the maximum case. The results show that the cluster is consisted from the multiple-spatial scale components while the low wave-number, hence the large-scale structure, is dominant. Three-dimensional structure reconstructed from the low-pass filtered data enables us to investigate the essential dynamics of particle clusters in detail.

  • PDF

멀티피직스 환경하의 이방성 구조물 해석 (Analysis of Anisotropic Structures under Multiphysics Environment)

  • 김준식;이재훈;박준영
    • 한국기계가공학회지
    • /
    • 제10권6호
    • /
    • pp.140-145
    • /
    • 2011
  • An anisotropic beam model is proposed by employing an asymptotic expansion method for thermo-mechanical multiphysics environment. An asymptotic method based on virtual work is introduced first, and then the variables of mechanical displacement and temperature rise are asymptotically expanded by taking advantage of geometrical slenderness of elastic bodies. Subsequently substituting these expansions into the virtual work principle allows us to asymptotically expand the virtual work. This will yield a set of recursive virtual works from which two-dimensional microscopic and one-dimensional macroscopic equations are systematically derived at each order. In this way, homogenized stiffnesses and thermomechanical coupling coefficients are derived. To demonstrate the validity and efficiency of the proposed approach, composite beams are taken as a test-bed example. The results obtained herein are compared to those of three-dimensional finite element analysis.

A Numerical Study on the Bubble Noise and the Tip Vortex Cavitation Inception

  • Park, Jin-Keun;Georges L. Chahine
    • Journal of Ship and Ocean Technology
    • /
    • 제7권3호
    • /
    • pp.13-33
    • /
    • 2003
  • This paper presents a numerical study on tip vortex cavitation inception predictions based on non-spherical bubble dynamics including splitting and jet noise emission. A brief summary of the numerical method and its validation against a laboratory experiment are presented. The behavior of bubble nuclei is studied in a tip vortex flow field at two Reynolds numbers, provided by a viscous flow solver. The bubble behavior is simulated by an axisymmetric potential flow solver with the effect of surrounding viscous flow taken into account using one way coupling. The effects of bubble nucleus size and Reynolds number are studied. An effort to model the bubble splitting at lower cavitation numbers is also described.

TMS320C31을 이용한 홍익적접구동팔의 제어에 관한 연구 (A Study on the Control of Hong Ik Direct Drive Arm Using TMS320C31)

  • 최종문;이종수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1222-1224
    • /
    • 1996
  • The Hong Ik Direct Drive Arm(HIDDA) is a SCARA typed direct drive manipulator with two degrees-of-freedom(DOF) using the direct drive motor of the NSK company. The direct NSK motors are used to give a large torque directly to the link, to reduce the modeling errors from the gears and chains. But, since the nonlinear coupling torques are transferred to the motor shaft without any reduction, we must consider a dynamic control algorithm. In this paper, we designed a robot controller for the HIDDA using a TMS320C31, which has the highest performance among the third DSP chips in the TI company. And we developed the integrated environment software of the robot management system to give the users an easy way of programming, running and simulation of the robot on the PC.

  • PDF

유체-구조 상호작용을 적용한 튜브다발의 유체탄성불안정성 과도적 전산해석 (Multi-Physics Simulations of Fluidelastic Instability for Tube Bundles in Cross-Flow)

  • 이민형;김용찬
    • 대한기계학회논문집B
    • /
    • 제28권2호
    • /
    • pp.174-180
    • /
    • 2004
  • Failure of tube bundles due to excessive flow-induced vibrations continues to affect the performance of nuclear power plant Early experimental studies concentrated on rigid structures and later investigators dealt with elastic structures because of their importance in many engineering fields. On the other hand, much less numerical work has been carried out, because of the numerical complexity associated with the problem. Conventional approaches usually decoupled the flow solution from the structural problem. The present numerical study proposes the methodology in analyzing the fluidelastic instability occurring in tube bundles by coupling the Computational fluid Dynamics (C%) with the tube equation of motions. The motion of the structures is modeled by a spring-damper-mass system that allows transnational motion in two directions (a two-degree-of-freedom system). The fluid motion and the cylinder response are solved in an iterative way, so that the interaction between the fluid and the structure can be accounted for property. The aim of the present work is to predict the fluidelstic instability of tube bundles and the associated phenomena, such as the response of the cylinder, the unsteady lift and drag on the cylinder, the vortex shedding frequency.

Periodicity Dependence of Magnetic Anisotropy and Magnetization of FeCo Heterostructure

  • Kim, Miyoung
    • Journal of Magnetics
    • /
    • 제21권1호
    • /
    • pp.6-11
    • /
    • 2016
  • The magnetic anisotropy energy (MAE) and the saturation magnetization $B_s$ of (110) $Fe_nCo_n$ heterostructures with n = 1, 2, and 3 are investigated in first-principles within the density functional theory by using the precise full-potential linearized augmented plane wave (FLAPW) method. We compare the results employing two different exchange correlation potentials, that is, the local density approximation (LDA) and the generalized gradient approximation (GGA), and include the spin-orbit coupling interaction of the valence states in the second variational way. The MAE is found to be enhanced significantly compared to those of bulk Fe and Co and the magnetic easy axis is in-plane in agreement with experiment. Also the MAE exhibits the in-plane angle dependence with a two-fold anisotropy showing that the $[1{\overline{I}}0]$ direction is the most favored spin direction. We found that as the periodicity increases, (i) the saturation magnetization $B_s$ decreases due to the reduced magnetic moment of Fe far from the interface, (ii) the strength of in-plane preference of spin direction increases yielding enhancement of MAE, and (iii) the volume anisotropy coefficient decreases because the volume increase outdo the MAE enhancement.

Investigation of a fiber reinforced polymer composite tube by two way coupling fluid-structure interaction

  • Daricik, Fatih;Canbolat, Gokhan;Koru, Murat
    • Coupled systems mechanics
    • /
    • 제11권4호
    • /
    • pp.315-333
    • /
    • 2022
  • Fluid-Structure Interaction (FSI) modeling is highly effective to reveal deformations, fatigue failures, and stresses on a solid domain caused by the fluid flow. Mechanical properties of the solid structures and the thermophysical properties of fluids can change under different operating conditions. In this study, we investigated the interaction of [45/-45]2 wounded composite tubes with the fluid flows suddenly pressurized to 5 Bar, 10 Bar, and 15 Bar at the ambient temperatures of 24℃, 66℃, and 82℃, respectively. Numerical analyzes were performed under each temperature and pressure condition and the results were compared depending on the time in a period and along the length of the tube. The main purpose of this study is to present the effects of the variations in fluid characteristics by temperature and pressure on the structural response. The variation of the thermophysical properties of the fluid directly affects the deformation and stress in the material due to the Wall Shear Stress (WSS) generated by the fluid flow. The increase or decrease in WSS directly affected the deformations. Results show that the increase in deformation is more than 50% between 5 Bar and 10 Bar for the same operating condition and it is more than 100% between 5 Bar and 15 Bar by the increase in pressure, as expected in terms of the solid mechanics. In the case of the increase in the temperature of fluid and ambient, the WSS and Von Mises stress decrease while the slight increases of deformations take place on the tube. On the other hand, two-way FSI modeling is needed to observe the effects of hydraulic shock and developing flow on the structural response of composite tubes.