• Title/Summary/Keyword: two-temperature model

Search Result 1,876, Processing Time 0.029 seconds

Prediction of Dormancy Release and Bud Burst in Korean Grapevine Cultivars Using Daily Temperature Data (기온자료에 근거한 주요 포도품종의 휴면해제 및 발아시기 추정)

  • Kwon Eun-Young;Song Gi-Cheol;Yun Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.3
    • /
    • pp.185-191
    • /
    • 2005
  • An accurate prediction of dormancy release and bud burst in temperate zone fruit trees is indispensable for farmers to plan heating time under partially controlled environments as well as to reduce the risk of frost damage in open fields. A thermal time-based two-step phenological model that originated in Italy was applied to two important grapevine cultivars in Korea for predicting bud-burst dates. The model consists of two sequential periods: a rest period described by chilling requirement and a forcing period described by heating requirement. It requires daily maximum and minimum temperature as an input and calculates daily chill units (chill days in negative sign) until a pre-determined chilling requirement for rest release is met. After the projected rest release date, it adds daily heat units (anti-chill days in positive sign) to the chilling requirement. The date when the sum reaches zero isregarded as the bud-burst in the model. Controlled environment experiments using field sampled twigs of 'Campbell Early' and 'Kyoho' cultivars were carried out in the vineyard at the National Horticultural Research Institute (NHRI) in Suwon during 2004-2005 to derive the model parameters: threshold temperature for chilling and chilling requirement for breaking dormancy. The model adjusted with the selected parameters was applied to the 1994-2004 daily temperature data obtained from the automated weather station in the NHRI vineyard to estimate bud burst dates of two cultivars and the results were compared with the observed data. The model showed a consistently good performance in predicting the bud burst of 'Campbell Early' and 'Kyoho' cultivars with 2.6 and 2.5 days of root mean squared error, respectively.

The Effects of Urban Forest on Summer Air Temperature in Seoul, Korea (도시림의 여름 대기온도 저감효과 - 서울시를 대상으로 -)

  • 조용현;신수영
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.4
    • /
    • pp.28-36
    • /
    • 2002
  • The main purpose of this study was to estimate a new regression model to explain the relationship between urban forest and air temperature in summer, 2001. This study consists of two parts: correlation coefficient analysis and regression analysis. According to correlation coefficient analysis, thermal infra-red radiations of the major land use categories found significant difference in each category. However there were no significant relationship between the data (thermal infra-red radiation and NDVI) derived from Landsat-7 ETM+ image and air temperature at Automatic Weather Stations(AWSs). After estimating various regression models for summer air temperature, the final models were chosen. The final regression models consisted of two variables such as forest m and traffic facilities area. The regression models explained over 78% of the variability in air temperatures. The regression models with variables of forest area and traffic facilities area showed that the coefficient of the first variable was even more significant than the second one. However, the negative impact of the traffic facilities area was slightly greater than the positive impact of the forest area. Consequently, the effects of forest area and traffic facilities area were apparent to explain summer air temperature in Seoul. Therefore two policies have the most important implications to mitigate the summer air temperature in Seoul: to expand and to conserve the urban forest; and to change the Oafnc facilities'characteristics. The results from this study are expected to be useful not merely in informing the public that urban forest mitigates summer air temperahne, but in urging the necessity of budgets for trees and managing urban forests. It is recommended that field swey of summer air temperature be Performed for the vadidation of the models. The main purpose of this study was to estimate a new regression model to explain the relationship between urban forest and air temperature in summer, 2001. This study consists of two parts: correlation coefficient analysis and regression analysis. According to correlation coefficient analysis, thermal infra-red radiations of the major land use categories found significant difference in each category. However there were no significant relationship between the data (thermal infra-red radiation and NDVI) derived from Landsat-7 ETM+ image and air temperature at Automatic Weather Stations(AWSs). After estimating various regression models for summer air temperature, the final models were chosen. The final regression models consisted of two variables such as forest m and traffic facilities area. The regression models explained over 78% of the variability in air temperatures. The regression models with variables of forest area and traffic facilities area showed that the coefficient of the first variable was even more significant than the second one. However, the negative impact of the traffic facilities area was slightly greater than the positive impact of the forest area. Consequently, the effects of forest area and traffic facilities area were apparent to explain summer air temperature in Seoul. Therefore two policies have the most important implications to mitigate the summer air temperature in Seoul: to expand and to conserve the urban forest; and to change the traffic facilities'characteristics. The results from this study are expected to be useful not merely in informing the public that urban forest mitigates summer air temperature, but in urging the necessity of budgets for trees and managing urban forests. It is recommended that field survey of summer air temperature be Performed for the vadidation of the models.

Process Analysis for Rheology Forming Considering Flow and Solidification Phenomena in Lower Solid Fraction (저고상율 소재의 유동 및 응고현상을 고려한 레올로지 성형공정해석)

  • Jung, Young-Jin;Cho, Ho-Sang;Kang, Chung-Gil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.156-164
    • /
    • 2001
  • Two-dimensional solidification analysis during rheology forming process of semi-solid aluminum alloy has been studied. Two-phase fluid flow model to investigate the velocity field and temperature distribution is proposed. The proposed mathematical model is applied to the die shape of the two types. To calculate the velocity and temperature fields during rheology forming process, the earth governing equation correspondent to the liquid and solid region are adapted. Therefore, each numerical models considering the solid and liquid region existing within the semi-solid material have been developed to predict the deflect of rheology forming gnarls. The Arbitrary Boundary Maker And Cell (ABMAC) method is employed to solve the two-phase flow model of the Navier-Stokes equation. Theoretical model on the basis of the two-phase flow model is the mixture rule of solid and liquid phases. This approach is based on the liquid and solid viscosity. The liquid viscosity is pure liquid state value, however solid viscosity is considered as a function of the shear rate, solid fraction and power law curves.

  • PDF

Two-temperature thermoelastic surface waves in micropolar thermoelastic media via dual-phase-lag model

  • Abouelregal, A.E.;Zenkour, A.M.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.6
    • /
    • pp.711-727
    • /
    • 2017
  • This article is concerned with a two-dimensional problem of micropolar generalized thermoelasticity for a half-space whose surface is traction-free and the conductive temperature at the surface of the half-space is known. Theory of two-temperature generalized thermoelasticity with phase lags using the normal mode analysis is used to solve the present problem. The formulas of conductive and mechanical temperatures, displacement, micro-rotation, stresses and couple stresses are obtained. The considered quantities are illustrated graphically and their behaviors are discussed with suitable comparisons. The present results are compared with those obtained according to one temperature theory. It is concluded that both conductive heat wave and thermodynamical heat wave should be separated. The two-temperature theory describes the behavior of particles of elastic body more real than one-temperature theory.

The Forecasting Power Energy Demand by Applying Time Dependent Sensitivity between Temperature and Power Consumption (시간대별 기온과 전력 사용량의 민감도를 적용한 전력 에너지 수요 예측)

  • Kim, Jinho;Lee, Chang-Yong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.129-136
    • /
    • 2019
  • In this study, we proposed a model for forecasting power energy demand by investigating how outside temperature at a given time affected power consumption and. To this end, we analyzed the time series of power consumption in terms of the power spectrum and found the periodicities of one day and one week. With these periodicities, we investigated two time series of temperature and power consumption, and found, for a given hour, an approximate linear relation between temperature and power consumption. We adopted an exponential smoothing model to examine the effect of the linearity in forecasting the power demand. In particular, we adjusted the exponential smoothing model by using the variation of power consumption due to temperature change. In this way, the proposed model became a mixture of a time series model and a regression model. We demonstrated that the adjusted model outperformed the exponential smoothing model alone in terms of the mean relative percentage error and the root mean square error in the range of 3%~8% and 4kWh~27kWh, respectively. The results of this study can be used to the energy management system in terms of the effective control of the cross usage of the electric energy together with the outside temperature.

Far-Infrared Ray Drying Characteristics of Rough Rice (I) -Thin layer drying equation- (벼의 원적외선 건조특성 (I) -박층건조방정식-)

  • Keum, D. H.;Kim, H.;Hong, S. J.
    • Journal of Biosystems Engineering
    • /
    • v.27 no.1
    • /
    • pp.45-50
    • /
    • 2002
  • This study was performed to develop thin layer drying equations fur short grain rough rice using far-infrared ray. Thin layer drying tests was conducted at four far-infrared ray temperature levels of 30, 40, 50, 60$^{\circ}C$ and two initial moisture content levels of 20.7, 26.2%(w.b.). The measured moisture ratios were fitted to Lewis and Page drying models by stepwise multiple regression analysis. Half response time of drying was affected by both drying temperature and initial moisture content at drying temperature of below 40$^{\circ}C$, but at above 40$^{\circ}C$ was mainly affected by drying temperature. Experimental constant(k) in Lewis model was a function of drying temperature, but K and N in Page model were function of drying temperature and initial moisture content. Moisture ratios predicted by two drying models agreed well with experimental values. But in the actual range of drying temperature above 30$^{\circ}C$ Page model was more suitable for predicting of drying rates.

Numerical Analysis on Cooling Characteristics of Electronic Components Using Convection and Conduction Heat Transfer (대류와 전도 열전달을 이용한 전자부품의 냉각특성 수치해석)

  • Son, Young-Seok;Shin, Jee-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.390-395
    • /
    • 2001
  • Cooling characteristics using convection and conduction heat transfer in a parallel channel with extruding heat sources are studied numerically. A two-dimensional model has been developed for numerical prediction of transient, compressible, viscous, laminar flow, and conjugate heat transfer between parallel plates with uniform block heat sources. The finite volume method is used to solve this problem. The considered assembly consists of two channels formed by two covers and one PCB which has three uniform heat source blocks. Five different cooling methods are considered to find efficient cooling method in a given geometry and heat source. The velocity and temperature fields, local temperature distribution along surface of blocks, and the maximum temperature in each block are obtained.

  • PDF

Numerical Modeling of Heat Transfer for Squeeze Casting of MMCs (용탕주조법을 이용한 금속복합재료 제조공정의 열전달 해석)

  • Jung, C.K.;Pyun, H.J.;Jung, S.W.;Nam, H.W.;Han, K.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.319-324
    • /
    • 2001
  • A finite element model for the process of squeeze casting for metal matrix composites (MMCs) in cylindrical mold is developed. The fluid flow and the heat transfer are the fundamental phenomena in the squeeze casing process. To describe heat transfer with solidification of molten aluminum, the energy equation in terms of temperature and enthalpy are applied to two dimensional axisymmetric model which is similar to the experimental system. And one dimensional flow model is employed to simulate the transient metal flow. The direct iteration technique was used to solve the resulting nonlinear algebraic equations. A computer program is developed to calculate the enthalpy, temperature and fluid velocity. Cooling curves and temperature distribution during infiltration and solidification are calculated for pure aluminum. The temperature is measured and recorded experimentally. At two points of the perform inside and one point of the mold outside, thermocouple wire are installed. The time-temperature data are compared with the calculated cooling curves. The experimental results show that the finite element model can estimate the solidification time and predict the cooling process.

  • PDF

Effects of Two-dimensional Heat and Mass Transports on Condensational Growth of Soot Particles in a Tubular Coater (원형관 코팅장치에서 연소 입자의 응축성장에 미치는 2차원 열 및 물질전달의 영향)

  • Park, Sung Hoon
    • Particle and aerosol research
    • /
    • v.9 no.3
    • /
    • pp.163-171
    • /
    • 2013
  • Soot particles emitted from combustion processes are often coated by non-absorbing organic materials, which enhance the global warming effect of soot particles. It is of importance to study the condensation characteristics of soot particles experimentally and theoretically to reduce the uncertainty of the climate impact of soot particles. In this study, the condensational growth of soot particles in a tubular coater was modeled by a one-dimensional (1D) plug flow model and a two-dimensional (2D) laminar flow model. The effects of 2D heat and mass transports on the predicted particle growth were investigated. The temperature and coating material vapor concentration distributions in radial direction, which the 1D model could not accounted for, affected substantially the particle growth in the coater. Under the simulated conditions, the differences between the temperatures and vapor concentrations near the wall and at the tube center were large. The neglect of these variations by the 1D model resulted in a large error in modeling the mass transfer and aerosol dynamics occurring in the coater. The 1D model predicted the average temperature and vapor concentration quite accurately but overestimated the average diameter of the growing particles considerably. At the outermost grid, at which condensation begins earliest due to the lowest temperature and saturation vapor concentration, condensing vapor was exhausted rapidly because of the competition between condensations on the wall and on the particle surface, decreasing the growth rate. At the center of the tube, on the other hand, the growth rate was low due to high temperature and saturation vapor concentration. The effects of Brownian diffusion and thermophoresis were not high enough to transport the coating material vapor quickly from the tube center to the wall. The 1D model based on perfect radial mixing could not take into account this phenomenon, resulting in a much higher growth rate than what the 2D model predicted. The result of this study indicates that contrary to a previous report for a thermodenuder, 2D heat and mass transports must be taken into account to model accurately the condensational particle growth in a coater.

Development of On-line Temperature Prediction Model for Plate Rolling (후판 압연의 온라인 온도예측 모델 개발)

  • 서인식;이창선;조세돈;주웅용
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.283-292
    • /
    • 1999
  • Temperature prediction model was developed for on-line application to plate rolling mills of POSCO. The adequate boundary conditions of heat transfer coefficients were obtained by comparing the predicted temperature with the measured temperatures taken by measuring system in plate rolling mill of POSCO. In obtaining the boundary condition which minimize the mean and standard deviation of the difference between prediction and measurement, orthogonal array for experimental design was used to reduce the calculation time of large data set. To predict the temperature drop at four edge of plate in one dimensional model, the energy change by heat transfer though directions perpendicular to thickness direction was treated like that by deformation. And the heat transfer through four edge directions was inferred from that through thickness direction with two coefficients of depth and severity of temperature drop at the edge. The boundary condition for the depth and severity of temperature drop were also determined using the measured temperature.

  • PDF