• 제목/요약/키워드: two-stage algorithm

검색결과 580건 처리시간 0.029초

화장품 물체 인식을 위한 Two-Stage 딥러닝 기반 알고리즘 (Two-Stage Deep Learning Based Algorithm for Cosmetic Object Recognition)

  • 김종민;서대호
    • 산업경영시스템학회지
    • /
    • 제46권4호
    • /
    • pp.101-106
    • /
    • 2023
  • With the recent surge in YouTube usage, there has been a proliferation of user-generated videos where individuals evaluate cosmetics. Consequently, many companies are increasingly utilizing evaluation videos for their product marketing and market research. However, a notable drawback is the manual classification of these product review videos incurring significant costs and time. Therefore, this paper proposes a deep learning-based cosmetics search algorithm to automate this task. The algorithm consists of two networks: One for detecting candidates in images using shape features such as circles, rectangles, etc and Another for filtering and categorizing these candidates. The reason for choosing a Two-Stage architecture over One-Stage is that, in videos containing background scenes, it is more robust to first detect cosmetic candidates before classifying them as specific objects. Although Two-Stage structures are generally known to outperform One-Stage structures in terms of model architecture, this study opts for Two-Stage to address issues related to the acquisition of training and validation data that arise when using One-Stage. Acquiring data for the algorithm that detects cosmetic candidates based on shape and the algorithm that classifies candidates into specific objects is cost-effective, ensuring the overall robustness of the algorithm.

유전자 알고리즘을 이용한 2단 릴리프 밸브의 최적설계 (An Optimal Design of a two stage relief valve by Genetic Algorithm)

  • 김승우;안경관;이병룡
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.501-506
    • /
    • 2002
  • In this study, a novel systematic design procedure by Genetic Algorithm of a two stage relief valve is proposed. First of all. a mathematical model describing the dynamics of a balanced piston type relief valve has been derived. Governing equations such as dynamic equations for the main spool and the pilot spool and flow equations for each orifice are established. The mathematical model is verified by comparing the results of simulation with that of experiments. Furthermore, influences of the parameters on the dynamic characteristics of a relief valve have been investigated by simulation of the proposed model. Major design parameters on the valve response are determined, which affect the system response significantly. And then, using the determined parameters, the optimization of the two stage relief valve by Genetic Algorithm, which is a random search algorithm can find the global optimum without converging local optimum, is performed. The optimal design process of a two stage relief valve is presented to determine the major design parameters. Fitness function reflects the changing pressure according to parameters. It is shown that the genetic algorithms satisfactorily optimized the major design parameters of the two stage relief valve.

  • PDF

생산용량 제약하의 2 단계 공급체인에 대한 효율적인 롯사이징 알고리듬 (An Improved Algorithm for a Capacitated Dynamic Lot-Sizing Problem with Two-Stage Supply Chain)

  • Hwang, Hark-Chin
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2008년도 추계학술대회 및 정기총회
    • /
    • pp.290-296
    • /
    • 2008
  • This paper considers a two-stage dynamic lot-sizing problem constrained by a supplier's production capacity. We derive an improved O($T^6$) algorithm over the O($T^7$) algorithm in van Hoesel et al. (2005).

  • PDF

L-SHAPED ALGORITHM FOR TWO STAGE PROBLEMS OF STOCHASTIC CONVEX PROGRAMMING

  • Tang, Hengyong;Zhao, Yufang
    • Journal of applied mathematics & informatics
    • /
    • 제13권1_2호
    • /
    • pp.261-275
    • /
    • 2003
  • In this paper we study two stage problems of stochastic convex programming. Solving the problems is very hard. A L-shaped method for it is given. The implement of the algorithm is simple, so less computation work is needed. The result of computation shows that the algorithm is effective.

웨이브렛 변환영역에서의 2단계 가변 블록 다해상도 움직임 추정 (Two-stage variable block-size multiresolution motion estiation in the wavelet transform domain)

  • 김성만;이규원;정학진;박규태
    • 한국통신학회논문지
    • /
    • 제22권7호
    • /
    • pp.1487-1504
    • /
    • 1997
  • In this paper, the two-stage variable block-size multiresolution motion algorithm is proposed for an interframe coding scheme in the wavelet decomposition. An optimal bit allocagion between motion vectors and the prediction error in sense of minimizing the total bit rate is obtained by the proposed algorithm. The proposed algorithm consists of two stages for motion estimatation and only the first stage can be separated and run on its own. The first stage of the algorithm introduces a new method to give the lower bit rate of the displaced frame difference as well as a smooth motion field. In the second stage of the algorithm, the technique is introduced to have more accurate motion vectors in detailed areas, and to decrease the number of motion vectors in uniform areas. The algorithm aims at minimizin gthe total bit rate which is sum of the motion vectors and the displaced frame difference. The optimal bit allocation between motion vectors and displaced frame difference is accomplished by reducing the number of motion vectors in uniform areas and it is based on a botom-up construction of a quadtree. An entropy criterion aims at the control of merge operation. Simulation resuls show that the algorithm lends itself to the wavelet based image sequence coding and outperforms the conventional scheme by up to the maximum 0.28 bpp.

  • PDF

A Novel Algorithm for Maintaining Packet Order in Two-Stage Switches

  • Zhang, Xiao Ning;Xu, Du;Li, Le Min
    • ETRI Journal
    • /
    • 제27권4호
    • /
    • pp.469-472
    • /
    • 2005
  • To enhance the scalability of high performance packet switches, a two-stage load-balanced switch has recently been introduced, in which each stage uses a deterministic sequence of configurations. The switch is simple to make scalable and has been proven to provide 100% throughput. However, the load-balanced switch may mis-sequence the packets. In this paper, we propose an algorithm called full frame stuff (FFS), which maintains packet order in the two-stage load-balanced switch and has excellent switching performance. This algorithm is distributed and each port can operate independently.

  • PDF

제약조건을 고려한 경제급전 제어를 위한 다단계 최적조류계산 알고리즘 (A Multi-level Optimal Power Flow Algorithm for Constrained Power Economic Dispatch Control)

  • 송경빈
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권9호
    • /
    • pp.424-430
    • /
    • 2001
  • A multi-level optimal power flow(OPF) algorithm has been evolved from a simple two stage optimal Power flow algorithm for constrained power economic dispatch control. In the proposed algorithm, we consider various constraints such as ower balance, generation capacity, transmission line capacity, transmission losses, security equality, and security inequality constraints. The proposed algorithm consists of four stages. At the first stage, we solve the aggregated problem that is the crude classical economic dispatch problem without considering transmission losses. An initial solution is obtained by the aggregation concept in which the solution satisfies the power balance equations and generation capacity constraints. Then, after load flow analysis, the transmission losses of an initial generation setting are matched by the slack bus generator that produces power with the cheapest cost. At the second stage we consider transmission losses. Formulation of the second stage becomes classical economic dispatch problem involving the transmission losses, which are distributed to all generators. Once a feasible solution is obtained from the second stage, transmission capacity and other violations are checked and corrected locally and quickly at the third stage. The fourth stage fine tunes the solution of the third stage to reach a real minimum. The proposed approach speeds up the two stage optimization method to an average gain of 2.99 for IEEE 30, 57, and 118 bus systems and EPRI Scenario systems A through D testings.

  • PDF

On the generalized truncated least squares adaptive algorithm and two-stage design method with application to adaptive control

  • Yamamoto, Yoshihiro;Nikiforuk, Peter-N.;Gupta, Madam-M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.7-12
    • /
    • 1993
  • This paper presents a generalized truncated least, squares adaptive algorithm and a two-stage design method. The proposed algorithm is directly derived from the normal equation of the generalized truncated least squares method (GTLSM). The special case of the GTLSM, the truncated least squares (TLS) adaptive algorithm, has a distinct features which includes the case of minimum steps estimator. This algorithm seemed to be best in the deterministic case. For real applications in the presence of disturbances, the GTLS adaptive algorithm is more effective. The two-stage design method proposed here combines the adaptive control system design with a conventional control design method and each can be treated independently. Using this method, the validity of the presented algorithms are examined by the simulation studies of an indirect adaptive control.

  • PDF

A two-stage and two-step algorithm for the identification of structural damage and unknown excitations: numerical and experimental studies

  • Lei, Ying;Chen, Feng;Zhou, Huan
    • Smart Structures and Systems
    • /
    • 제15권1호
    • /
    • pp.57-80
    • /
    • 2015
  • Extended Kalman Filter (EKF) has been widely used for structural identification and damage detection. However, conventional EKF approaches require that external excitations are measured. Also, in the conventional EKF, unknown structural parameters are included as an augmented vector in forming the extended state vector. Hence the sizes of extended state vector and state equation are quite large, which suffers from not only large computational effort but also convergence problem for the identification of a large number of unknown parameters. Moreover, such approaches are not suitable for intelligent structural damage detection due to the limited computational power and storage capacities of smart sensors. In this paper, a two-stage and two-step algorithm is proposed for the identification of structural damage as well as unknown external excitations. In stage-one, structural state vector and unknown structural parameters are recursively estimated in a two-step Kalman estimator approach. Then, the unknown external excitations are estimated sequentially by least-squares estimation in stage-two. Therefore, the number of unknown variables to be estimated in each step is reduced and the identification of structural system and unknown excitation are conducted sequentially, which simplify the identification problem and reduces computational efforts significantly. Both numerical simulation examples and lab experimental tests are used to validate the proposed algorithm for the identification of structural damage as well as unknown excitations for structural health monitoring.

성능변수와 대용변수를 이용한 3단계 $\bar{X}$ 관리도의 경제적 설계 (Economic Design of Three-Stage $\bar{X}$ Control Chart Based on both Performance and Surrogate Variables)

  • 곽신석;이주호
    • 품질경영학회지
    • /
    • 제44권4호
    • /
    • pp.751-770
    • /
    • 2016
  • Purpose: Two-stage ${\bar{X}}$ chart is a useful tool for process control when a surrogate variable may be used together with a performance variable. This paper extends the two-stage ${\bar{X}}$ chart to a three stage version by decomposing the first stage into the preliminary stage and the main stage. Methods: The expected cost function is derived using Markov-chain approach. The optimal designs are found for numerical examples using a genetic algorithm combined with a pattern search algorithm and compared to those of the two-stage ${\bar{X}}$ chart. Sensitivity analysis is performed to see the parameter effects. Results: The proposed design outperforms the optimal design of the two-stage ${\bar{X}}$ chart in terms of the expected cost per unit time unless the correlation between the performance and surrogate variables is modest and the shift in process mean is smallish. Conclusion: Three-stage ${\bar{X}}$ chart may be a useful alternative to the two-stage ${\bar{X}}$ chart especially when the correlation between the performance and surrogate variables is relatively high and the shift in process mean is on the small side.