
ETRI Journal, Volume 27, Number 4, August 2005 Xiao Ning Zhang et al. 469

ABSTRACT⎯To enhance the scalability of high
performance packet switches, a two-stage load-balanced
switch has recently been introduced, in which each stage uses a
deterministic sequence of configurations. The switch is simple
to make scalable and has been proven to provide 100%
throughput. However, the load-balanced switch may mis-
sequence the packets. In this paper, we propose an algorithm
called full frame stuff (FFS), which maintains packet order in
the two-stage load-balanced switch and has excellent
switching performance. This algorithm is distributed and each
port can operate independently.

Keywords⎯Two-stage load-balanced switch, scalability,
throughput, mean delay.

I. Introduction
Recently, a novel switching structure called a load-balanced

Birkhoff-von Neumann switch was proposed by C. S. Chang
and others. [1]. The switch eliminates a scheduler and is simple
to make scalable.

In the load-balanced switch, because of the load-balancing of
the first stage, the lengths of virtual output queues (VOQs) in the
intermediate inputs are not identical, and the packets through the
switch can be mis-sequenced. Although strictly not
disallowed in an Internet router, mis-sequencing causes problems
for some protocols, for example., TCP does not perform well
when out-of-order packets arrive at their destination. Out-of-
order packets can be perceived as loss indicators and trigger an
unnecessary reconnection and retransmission. There are two

Manuscript received Nov. 05, 2004; revised June 06, 2005.
This work is supported by National Natural Science Foundation of China (NSFC) under

grant no. 60372011.
Xiao Ning Zhang (phone: +86 28 83202468, email: xiaoning.z@163.com), Du Xu (email:

xudu@uestc.edu.cn), and Le Min Li (email: lml@uestc.edu.cn) are with Key Lab of
Broadband Optical Fiber Transmission and Communication Networks, the University of
Electronic Science and Technology of China, Chengdu, China.

methods to prevent the packets from being out-of-order in the
load-balanced switch. The first method permits the packets to be
out-of-order in the switch but reorders the packets using a finite
reordering buffer at the output. The second method is to make
sure that packets arrive in order to the outputs, thus keeping
packets in order throughout the switch. In [2], the author
introduces an algorithm called uniform frame spreading (UFS).
UFS is based on the second method and a distributed algorithm;
however, UFS requires that packets be transferred only when
there is a full frame in the queue (we call N packets from the
same flow “a full frame”). This greatly increases the waiting time
of the packets at each input. In [3], the authors propose an
algorithm called full ordered full frame (FOFF). FOFF is based
on the first method and a distributed algorithm. As in UFS, each
input keeps a separate FIFO queue for each output. When a
queue contains at least one full frame, FOFF behaves as UFS.
However, FOFF allows for a non-empty queue to send packets
when no queue has any full frame, which causes packets to be
out-of-order. So in FOFF, each output has N FIFO queues
corresponding to the N intermediate inputs to reorder the packets.
FOFF can avoid the starvation in UFS. FOFF also has its own
disadvantage. FOFF requires sending packets from the same
flow uniformly to the intermediate inputs, so the output can
reorder the arriving packets based on its intermediate input.
Assume that a given queue is the last served as a no-full-frame
queue and that the pointer keeps track of the last intermediate
input to which the packet is transferred. When the queue is
served again, the packet is only transferred starting from the time
connected with the next intermediate input, which prevents the
inputs from fully utilizing the N timeslots. This increases the
mean delay of the switch.

In this paper, we propose a novel algorithm called full frame
stuff (FFS). FFS orders the packets through the switch. FFS is a

A Novel Algorithm for Maintaining Packet Order in
Two-Stage Switches

 Xiao Ning Zhang, Du Xu, and Le Min Li

470 Xiao Ning Zhang et al. ETRI Journal, Volume 27, Number 4, August 2005

distributed algorithm with good switching performance.

II. Switch Architecture

Throughout the paper, we’ll assume the number of switch
ports by N (N>2); the sequence is one in which input i is
connected to output ((t+i) modulo N) at timeslot t in the first
stage, and input j is connected to output ((t-j) modulo N) at
timeslot t in the second stage; a flow is the set of all packets
with the same input and output destination; and consecutive N
packets from the same flow is called a full frame.

At each input in the switch architecture with FFS, there are N
VOQs, one-per output. For example, an arriving packet
destined to j is placed in Qj (1≤j≤N), and there are a total of N2
VOQs at N inputs.

At each intermediate input, three-dimensional queues are
employed. There are N2 VOQs at each intermediate input, and
there are a total of N3 VOQs at N intermediate inputs. We’ll use
a three-dimensional coordinate (i,j,k) (1≤i,j,k≤N) to denote a
VOQ in the intermediate inputs, and a packet whose input is j
and output destination is k arriving at intermediate i will be
placed in VOQ (i,j,k).

FFS makes sure the packets through the switch are orderly;
when packets arrive at the output, it can leave the switch
directly without output buffering, so there are no reordering
queues at the outputs.

III. Full Frame Stuff

The basic idea of FFS is to allow a non-full frame to be sent after
being stuffed with “idle packets.” In FFS, each input sends one full
frame in every continuous N timeslot as in UFS, but starvation in
UFS can be avoided. In what follows, we’ll define how the FFS
algorithm works at each input, intermediate input, and output.

1. Input Implementation

At each input, an arriving packet destined to output j is placed
in Qj, and adds two fields of “flow packets” and “total packets”
to the packet. The “flow packets” field indicates whether the
packet is an “idle packet” created based on the FFS algorithm or
a “non-idle packet” from input ports of the switch, while the
“total packets” field indicates the number of “non-idle packets”
in one stuffed full frame. Here, we assume for every mN (m is an
integer parameter, m is a integer parameter ≥1) timeslots, the
input selects the m longest queues from N queues to serve for the
next mN timeslots (because each input only sends one stuffed
full frame every N timeslots, and for every mN timeslots each
input only sends m full frames). The reason for choosing the m
longest queues is to decrease the number of idle packets in the

stuffed full frame and fully utilize timeslots to send “non-idle
packets.” The m queues are arranged in order of length as
{Q1,Q2,…,Qm}, and the corresponding length of the queues is
recorded as {L1,L2,…,Lm}. In the first N timeslots, the input sends
packets from Q1. If L1 equals zero, which means Q1 is an empty
queue, then the input doesn’t send packets in the N timeslots. If
Q1 is a non-empty queue, in every timeslot the packet of the
head-of-line is taken out from Q1. If Q1 is not empty, the packet’s
field “flow packet” is set as “1” and “total packets” is set as “L1.”
If Q1 is now empty, then an “idle packet” to be stuffed is created,
whose input and output destination are set on the current
situation, and the “flow packet” is set as “0” and “total packets”
is set as “L1.” The packets (including stuff packets) are sent from
the input to the currently connected intermediate input through
the first stage. In N timeslots, a full frame leaves the input in
order, and the j-th packet of the full frame is transferred to
intermediate input j. In this way, the second N timeslots is for Q2,
the third N timeslots is for Q3 … and the m-th N timeslots is for
Qm, until the input selects the m longest queues again.

In FFS, the input orderly transfers a full frame to the
intermediate inputs, just like in UFS. And if there is not a full
frame at the input, UFS must wait for the packets while FFS
forms a full frame by producing the stuff packets. From this, m
is an important parameter in FFS. In section IV we’ll determine
the value of m from the computer simulations.

2. Intermediate Input Implementation

FFS uses three-dimensional queues in the intermediate inputs.
Assume that a packet arrives at intermediate input i through the
first stage, and its input is j and output destination is k, then the
packet will be placed in VOQ (i, j, k) at intermediate input i.

When the timeslot is t, assume that intermediate input i is
connected to output k through the second stage. Intermediate
input i detects the contents of all VOQs (i, j, k) (j=1,2,…,N)
destined to the output k in the order of j. Below are the steps for
the examination of the queues. First we initialize three
variables: j=1; length=0; queue_for_send=N+1.

Step 1: Detect the head-of-line packet of VOQ (i, j, k). If the
queue is empty, turn to step 3. Otherwise, go to step 2.

Step 2: Access the head-of-line packet from VOQ (i,j,k) and
read the value of its field’s “total packet.” If the value is more
than the value of length, the value is assigned to length and j is
assigned to queue_for_send. Then, go to step 3.

Step 3: j=j+1. If j is more than N, go to step 4; otherwise,
return to step 1.

Step 4: Examine the value of queue_for_send. If it equals N+1,
it means these queues are all empty and no packet is transferred. If
it is less than N+1, intermediate input i transfers the head-of-line
packet from VOQ (i, queue_for_send, k) to output k.

ETRI Journal, Volume 27, Number 4, August 2005 Xiao Ning Zhang et al. 471

Fig. 1. FFS algorithm in intermediate inputs for output 1.

VOQ(2,1,1)

VOQ(1,1,1)

VOQ(3,1,1)

VOQ(2,2,1)

VOQ(1,2,1)

VOQ(3,2,1)

VOQ(2,3,1)

VOQ(1,3,1)

VOQ(3,3,1)

ff1

3

3

3

3

33

2

2

2

ff3

221

221

2

ff4

ff2

1

21

1

1

ff5

ff6

ff7

Because all the inputs transfer full frames to the intermediate
inputs, the lengths of VOQs in the intermediate inputs are
identical. When all intermediate inputs are orderly connected to
a given output, by examination in step 4, the packets (if there
are no-empty-queues) transferred are all from the same full
frame. As the full frame is produced by stuffing packets, we
select the queue whose head-of-line packet’s “total packet” is
the most, which means there are the least number of stuffing
“idle packets” in the full frame. So the intermediate inputs can
utilize the timeslots fully to transfer the useful packets to the
outputs and assure the throughput of the switch. Figure 1
illustrates the FFS algorithm in intermediate inputs in a 3-port
load-balanced switch. In Fig. 1, the three-dimensional queues
are rearranged so that all the queues in intermediate inputs
containing packets from the same input are adjacent to each
other. In practice, of course, the queues are not arranged like
this, but they have been redrawn to help explain the algorithm.
The shadowed packet indicates a “non-idle packet” and the
transparent packet indicates an “idle packet.” The number in
each packet represents the value of the field’s “total packets.”
The numbers above the full frames indicate the order in which
they will be served. Below are the processes of FFS in
intermediate inputs. In the example, FFS serves the first full
frame (ff1) from input 1 because the value of its “total packets”
is the largest in all head-of-line frames to output 1. FFS serves
it over three consecutive timeslots, delivering the three packets
to output 1. FFS then serves ff2 from input 1 in the next three
consecutive timeslots. Currently, there is no full frame from
input 1 in intermediate inputs. The third served full frame is ff3
from input 2 (ff4 has the same value of “total packets” with that
of ff3; according to our definition, FFS chooses ff3). FFS
serves ff4 and ff5 from input 3. Then ff6 is served (ff6 has the

same value of “total packets” with that of ff7; according to our
definition, FFS chooses ff6). No full frame from input 2 exits in
the intermediate inputs. At last, the served full frame is ff7 from
input 3.

3. Output Implementation

When the packet arrives at the output through the second
stage, the two fields of “flow packet” and “total packet” are
removed from it. The value of the “flow packet” is examined.
If it equals 1, the packet is a “non-idle packet”. Then, the
packet is sent out of the switch; if it equals 0, the packet is an
“idle packet” and FFS then destroys the packet immediately.

4. Properties of FFS

FFS has the following properties:

•FFS is a distributed algorithm. The inputs, intermediate
inputs, and outputs can work independently. It needs no
additional communication of information among them.

• In order to know the amount of congestion in the switch (for
example to implement a drop-policy), we need to know
how many packets are in each VOQ of the intermediate
inputs. But because each VOQ has the same occupancy
(one packet from each full frame), it is sufficient to look at
just one intermediate input.

•FFS can avoid pathological traffic patterns. It does so by
spreading each flow evenly across the intermediate inputs.
FFS guarantees that the cumulative number of packets sent
to each intermediate input for a given flow is the same. This
even spreading prevents a traffic pattern from concentrating
packets to any individual intermediate inputs.

IV. Simulation Results and Analysis

In the simulation, we assume that in every timeslot the input
and intermediate input can only transfer one packet, and the
physical delay of the switch stage is zero. This means a packet
takes a timeslot through the switch stage. The packet arrival
process is a Bernoulli process and its destinations are uniformly
distributed.

First, we simulate an 8-port load-balanced switch using the
FFS algorithm with parameter m. Figure 2 shows the
throughput–traffic load curves, and Fig. 3 shows the mean
delay-traffic load curves.

Figure 2 shows that in FFS, when m equals any value of (1,…,
8), a 100% throughput can be assured. In fact, when the mean
rate matrix of input traffic satisfies “no overbooking conditions,”
the switch can provide 100% throughput [1]. This means that for
uniform Bernoulli i.i.d. traffic, a 100% throughput can be

472 Xiao Ning Zhang et al. ETRI Journal, Volume 27, Number 4, August 2005

guaranteed when at most one packet arrives at an input per
timeslot. Stuffing packets into full frame satisfies the requirement,
so FFS can provide 100% throughput with any value of m.

Fig. 2. Throughput-traffic load curves in FFS.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m=1 m=2 m=3 m=4
m=5 m=6 m=7 m=8

Traffic load

Th
ro

ug
hp

ut

Fig. 3. Mean delay-traffic load curves in FFS.

0

20

40

60

80

100

120

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

m=1 m=2 m=3 m=4
m=5 m=6 m=7 m=8

Traffic load

M
ea

n
de

la
y

(ti
m

es
lo

ts
)

Figure 3 shows that when m is less than 6, the mean delay
decreases with the increase of m; when m is more than 6, the
mean delay increases with the increase of m. In every mN
timeslots, the input selects the m longest queues from N queues
to serve for the next mN timeslots. Assume that at i-th N
timeslots (1≤i≤m) the N inputs serve queues {Q1i,Q2i,…,QNi}.
Although the two-stage switch is non-blocking and collision-free,
in the intermediate input there exists output-competition from
VOQs corresponding to the same output. When m increases, the
interval of the detecting time increases and the number of the
same queues in {Q1i,Q2i,…,QNi} will decrease. So when the
intermediate inputs transfer packets to the outputs, the probability
of the appearance of a collision will decrease and the switching
performance can be improved. But when m is too large, the
interval of the detecting time also becomes large. The last several
queues to be served may not be the relatively longer queues.
Because the inputs produce full frames by stuffing packets, this
will greatly increase the mean delay of the switch, especially in a
high traffic load. In the simulation to the 8-port load-balanced
switch using FFS, we discovered when m equals 6 the switch has
good switching performance. When the number of the switch
port equals 16 or 24, we discovered that when m equals 14 or 22
the switching performance is satisfactory. So we suggest m equals

N-2 for the N-port load-balanced switch in this paper.
In the above, we determine the value of m in FFS. We

simulate the 8-port load-balanced switch using FFS (m=6), UFS,
and FOFF. Figure 6 shows their mean delay-traffic load curves.

Figure 4 shows that the mean delay of FFS is apparently less
than that of UFS, especially in a low traffic load. The reason for
this is that it needs more time to form a full frame in a low
traffic load in UFS, and the mean delay decreases with the
increase of traffic load. When the traffic load is less than 0.2,
the mean delay of FFS is larger than that of FOFF. This is
because FFS needs to stuff more “idle packets” in full frame
with low traffic load and can not sufficiently utilize the
bandwidth of the switch. But when traffic load increases, the
mean delay of FFS is less than that of FOFF. The reason is that
in FOFF the input requires transferring packets uniformly to
the intermediate inputs and can not efficiently use the N
timeslots to send packets.

Fig. 4. Mean delay-traffic load curves in FFS, UFS, and FOFF.

0

50

100

150

200

250

300

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

UFS FFS FOFF

Traffic load

M
ea

n
de

la
y

(ti
m

es
lo

ts
)

V. Conclusion

We propose a novel algorithm called full framed stuff (FFS),
which can keep the packets in order throughout the load-
balanced switch. FFS can provide good switching performance
(as throughput and delay). FFS is also a distributed algorithm,
and each port can operate independently.

References

[1] C.S. Chang, D.S. Lee, and C.M. Lien, “Load Balanced Birkhoff -
von Neumann Switches, Part I: One-Stage Buffering,” Computer
Comm., Vol. 25, 2002, pp. 611-622.

[2] I. Keslassy, Ph.D. dissertation, http://comnet.technion.ac.il/~isaac/
p/thesis.pdf.

[3] I. Keslassy, S.-T. Chuang, K. Yu, et al, “Scaling Internet Routers
Using Optics” ACM SIGCOMM ’03, Karlsruhe, Germany,
August 2003.

