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ABSTRACT⎯To enhance the scalability of high 
performance packet switches, a two-stage load-balanced 
switch has recently been introduced, in which each stage uses a 
deterministic sequence of configurations. The switch is simple 
to make scalable and has been proven to provide 100% 
throughput. However, the load-balanced switch may mis-
sequence the packets. In this paper, we propose an algorithm 
called full frame stuff (FFS), which maintains packet order in 
the two-stage load-balanced switch and has excellent 
switching performance. This algorithm is distributed and each 
port can operate independently. 

Keywords⎯Two-stage load-balanced switch, scalability, 
throughput, mean delay. 

I. Introduction 
Recently, a novel switching structure called a load-balanced 

Birkhoff-von Neumann switch was proposed by C. S. Chang 
and others. [1]. The switch eliminates a scheduler and is simple 
to make scalable. 

In the load-balanced switch, because of the load-balancing of 
the first stage, the lengths of virtual output queues (VOQs) in the 
intermediate inputs are not identical, and the packets through the 
switch can be mis-sequenced. Although strictly not  
disallowed in an Internet router, mis-sequencing causes problems 
for some protocols, for example., TCP does not perform well 
when out-of-order packets arrive at their destination. Out-of-
order packets can be perceived as loss indicators and trigger an 
unnecessary reconnection and retransmission. There are two  
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methods to prevent the packets from being out-of-order in the 
load-balanced switch. The first method permits the packets to be 
out-of-order in the switch but reorders the packets using a finite 
reordering buffer at the output. The second method is to make 
sure that packets arrive in order to the outputs, thus keeping 
packets in order throughout the switch. In [2], the author 
introduces an algorithm called uniform frame spreading (UFS). 
UFS is based on the second method and a distributed algorithm; 
however, UFS requires that packets be transferred only when 
there is a full frame in the queue (we call N packets from the 
same flow “a full frame”). This greatly increases the waiting time 
of the packets at each input. In [3], the authors propose an 
algorithm called full ordered full frame (FOFF). FOFF is based 
on the first method and a distributed algorithm. As in UFS, each 
input keeps a separate FIFO queue for each output. When a 
queue contains at least one full frame, FOFF behaves as UFS. 
However, FOFF allows for a non-empty queue to send packets 
when no queue has any full frame, which causes packets to be 
out-of-order. So in FOFF, each output has N FIFO queues 
corresponding to the N intermediate inputs to reorder the packets. 
FOFF can avoid the starvation in UFS. FOFF also has its own 
disadvantage. FOFF requires sending packets from the same 
flow uniformly to the intermediate inputs, so the output can 
reorder the arriving packets based on its intermediate input. 
Assume that a given queue is the last served as a no-full-frame 
queue and that the pointer keeps track of the last intermediate 
input to which the packet is transferred. When the queue is 
served again, the packet is only transferred starting from the time 
connected with the next intermediate input, which prevents the 
inputs from fully utilizing the N timeslots. This increases the 
mean delay of the switch.  

In this paper, we propose a novel algorithm called full frame 
stuff (FFS). FFS orders the packets through the switch. FFS is a 
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distributed algorithm with good switching performance. 

II. Switch Architecture 

Throughout the paper, we’ll assume the number of switch 
ports by N (N>2); the sequence is one in which input i is 
connected to output ((t+i) modulo N) at timeslot t in the first 
stage, and input j is connected to output ((t-j) modulo N) at 
timeslot t in the second stage; a flow is the set of all packets 
with the same input and output destination; and consecutive N 
packets from the same flow is called a full frame. 

At each input in the switch architecture with FFS, there are N 
VOQs, one-per output. For example, an arriving packet 
destined to j is placed in Qj (1≤j≤N), and there are a total of N2 
VOQs at N inputs.  

At each intermediate input, three-dimensional queues are 
employed. There are N2 VOQs at each intermediate input, and 
there are a total of N3 VOQs at N intermediate inputs. We’ll use 
a three-dimensional coordinate (i,j,k) (1≤i,j,k≤N) to denote a 
VOQ in the intermediate inputs, and a packet whose input is j 
and output destination is k arriving at intermediate i will be 
placed in VOQ (i,j,k). 

FFS makes sure the packets through the switch are orderly; 
when packets arrive at the output, it can leave the switch 
directly without output buffering, so there are no reordering 
queues at the outputs. 

III. Full Frame Stuff 

The basic idea of FFS is to allow a non-full frame to be sent after 
being stuffed with “idle packets.” In FFS, each input sends one full 
frame in every continuous N timeslot as in UFS, but starvation in 
UFS can be avoided. In what follows, we’ll define how the FFS 
algorithm works at each input, intermediate input, and output. 

1. Input Implementation 

At each input, an arriving packet destined to output j is placed 
in Qj, and adds two fields of “flow packets” and “total packets” 
to the packet. The “flow packets” field indicates whether the 
packet is an “idle packet” created based on the FFS algorithm or 
a “non-idle packet” from input ports of the switch, while the 
“total packets” field indicates the number of “non-idle packets” 
in one stuffed full frame. Here, we assume for every mN (m is an 
integer parameter, m is a integer parameter ≥1) timeslots, the 
input selects the m longest queues from N queues to serve for the 
next mN timeslots (because each input only sends one stuffed 
full frame every N timeslots, and for every mN timeslots each 
input only sends m full frames). The reason for choosing the m 
longest queues is to decrease the number of idle packets in the 

stuffed full frame and fully utilize timeslots to send “non-idle 
packets.” The m queues are arranged in order of length as 
{Q1,Q2,…,Qm}, and the corresponding length of the queues is 
recorded as {L1,L2,…,Lm}. In the first N timeslots, the input sends 
packets from Q1. If L1 equals zero, which means Q1 is an empty 
queue, then the input doesn’t send packets in the N timeslots. If 
Q1 is a non-empty queue, in every timeslot the packet of the 
head-of-line is taken out from Q1. If Q1 is not empty, the packet’s 
field “flow packet” is set as “1” and “total packets” is set as “L1.” 
If Q1 is now empty, then an “idle packet” to be stuffed is created, 
whose input and output destination are set on the current 
situation, and the “flow packet” is set as “0” and “total packets” 
is set as “L1.” The packets (including stuff packets) are sent from 
the input to the currently connected intermediate input through 
the first stage. In N timeslots, a full frame leaves the input in 
order, and the j-th packet of the full frame is transferred to 
intermediate input j. In this way, the second N timeslots is for Q2, 
the third N timeslots is for Q3 … and the m-th N timeslots is for 
Qm, until the input selects the m longest queues again. 

In FFS, the input orderly transfers a full frame to the 
intermediate inputs, just like in UFS. And if there is not a full 
frame at the input, UFS must wait for the packets while FFS 
forms a full frame by producing the stuff packets. From this, m 
is an important parameter in FFS. In section IV we’ll determine 
the value of m from the computer simulations. 

2. Intermediate Input Implementation 

FFS uses three-dimensional queues in the intermediate inputs. 
Assume that a packet arrives at intermediate input i through the 
first stage, and its input is j and output destination is k, then the 
packet will be placed in VOQ (i, j, k) at intermediate input i. 

When the timeslot is t, assume that intermediate input i is 
connected to output k through the second stage. Intermediate 
input i detects the contents of all VOQs (i, j, k) (j=1,2,…,N) 
destined to the output k in the order of j. Below are the steps for 
the examination of the queues. First we initialize three 
variables: j=1; length=0; queue_for_send=N+1. 

Step 1: Detect the head-of-line packet of VOQ (i, j, k). If the 
queue is empty, turn to step 3. Otherwise, go to step 2. 

Step 2: Access the head-of-line packet from VOQ (i,j,k) and 
read the value of its field’s “total packet.” If the value is more 
than the value of length, the value is assigned to length and j is 
assigned to queue_for_send. Then, go to step 3.  

Step 3: j=j+1. If j is more than N, go to step 4; otherwise, 
return to step 1. 

Step 4: Examine the value of queue_for_send. If it equals N+1, 
it means these queues are all empty and no packet is transferred. If 
it is less than N+1, intermediate input i transfers the head-of-line 
packet from VOQ (i, queue_for_send, k) to output k. 
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Fig. 1. FFS algorithm in intermediate inputs for output 1. 
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Because all the inputs transfer full frames to the intermediate 
inputs, the lengths of VOQs in the intermediate inputs are 
identical. When all intermediate inputs are orderly connected to 
a given output, by examination in step 4, the packets (if there 
are no-empty-queues) transferred are all from the same full 
frame. As the full frame is produced by stuffing packets, we 
select the queue whose head-of-line packet’s “total packet” is 
the most, which means there are the least number of stuffing 
“idle packets” in the full frame. So the intermediate inputs can 
utilize the timeslots fully to transfer the useful packets to the 
outputs and assure the throughput of the switch. Figure 1 
illustrates the FFS algorithm in intermediate inputs in a 3-port 
load-balanced switch. In Fig. 1, the three-dimensional queues 
are rearranged so that all the queues in intermediate inputs 
containing packets from the same input are adjacent to each 
other. In practice, of course, the queues are not arranged like 
this, but they have been redrawn to help explain the algorithm. 
The shadowed packet indicates a “non-idle packet” and the 
transparent packet indicates an “idle packet.” The number in 
each packet represents the value of the field’s “total packets.” 
The numbers above the full frames indicate the order in which 
they will be served. Below are the processes of FFS in 
intermediate inputs. In the example, FFS serves the first full 
frame (ff1) from input 1 because the value of its “total packets” 
is the largest in all head-of-line frames to output 1. FFS serves 
it over three consecutive timeslots, delivering the three packets 
to output 1. FFS then serves ff2 from input 1 in the next three 
consecutive timeslots. Currently, there is no full frame from 
input 1 in intermediate inputs. The third served full frame is ff3 
from input 2 (ff4 has the same value of “total packets” with that 
of ff3; according to our definition, FFS chooses ff3). FFS 
serves ff4 and ff5 from input 3. Then ff6 is served (ff6 has the 

same value of “total packets” with that of ff7; according to our 
definition, FFS chooses ff6). No full frame from input 2 exits in 
the intermediate inputs. At last, the served full frame is ff7 from 
input 3. 

3. Output Implementation 

When the packet arrives at the output through the second 
stage, the two fields of “flow packet” and “total packet” are 
removed from it. The value of the “flow packet” is examined. 
If it equals 1, the packet is a “non-idle packet”. Then, the 
packet is sent out of the switch; if it equals 0, the packet is an 
“idle packet” and FFS then destroys the packet immediately.  

4. Properties of FFS  

FFS has the following properties: 

•FFS is a distributed algorithm. The inputs, intermediate 
inputs, and outputs can work independently. It needs no 
additional communication of information among them. 

• In order to know the amount of congestion in the switch (for 
example to implement a drop-policy), we need to know 
how many packets are in each VOQ of the intermediate 
inputs. But because each VOQ has the same occupancy 
(one packet from each full frame), it is sufficient to look at 
just one intermediate input. 

•FFS can avoid pathological traffic patterns. It does so by 
spreading each flow evenly across the intermediate inputs. 
FFS guarantees that the cumulative number of packets sent 
to each intermediate input for a given flow is the same. This 
even spreading prevents a traffic pattern from concentrating 
packets to any individual intermediate inputs.  

IV. Simulation Results and Analysis 

In the simulation, we assume that in every timeslot the input 
and intermediate input can only transfer one packet, and the 
physical delay of the switch stage is zero. This means a packet 
takes a timeslot through the switch stage. The packet arrival 
process is a Bernoulli process and its destinations are uniformly 
distributed. 

First, we simulate an 8-port load-balanced switch using the 
FFS algorithm with parameter m. Figure 2 shows the 
throughput–traffic load curves, and Fig. 3 shows the mean 
delay-traffic load curves.  

Figure 2 shows that in FFS, when m equals any value of (1,…, 
8), a 100% throughput can be assured. In fact, when the mean 
rate matrix of input traffic satisfies “no overbooking conditions,” 
the switch can provide 100% throughput [1]. This means that for 
uniform Bernoulli i.i.d. traffic, a 100% throughput can be 
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guaranteed when at most one packet arrives at an input per 
timeslot. Stuffing packets into full frame satisfies the requirement, 
so FFS can provide 100% throughput with any value of m. 

 
 

Fig. 2. Throughput-traffic load curves in FFS. 
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Fig. 3. Mean delay-traffic load curves in FFS. 
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Figure 3 shows that when m is less than 6, the mean delay 
decreases with the increase of m; when m is more than 6, the 
mean delay increases with the increase of m. In every mN 
timeslots, the input selects the m longest queues from N queues 
to serve for the next mN timeslots. Assume that at i-th N 
timeslots (1≤i≤m) the N inputs serve queues {Q1i,Q2i,…,QNi}. 
Although the two-stage switch is non-blocking and collision-free, 
in the intermediate input there exists output-competition from 
VOQs corresponding to the same output. When m increases, the 
interval of the detecting time increases and the number of the 
same queues in {Q1i,Q2i,…,QNi} will decrease. So when the 
intermediate inputs transfer packets to the outputs, the probability 
of the appearance of a collision will decrease and the switching 
performance can be improved. But when m is too large, the 
interval of the detecting time also becomes large. The last several 
queues to be served may not be the relatively longer queues. 
Because the inputs produce full frames by stuffing packets, this 
will greatly increase the mean delay of the switch, especially in a 
high traffic load. In the simulation to the 8-port load-balanced 
switch using FFS, we discovered when m equals 6 the switch has 
good switching performance. When the number of the switch 
port equals 16 or 24, we discovered that when m equals 14 or 22 
the switching performance is satisfactory. So we suggest m equals 

N-2 for the N-port load-balanced switch in this paper. 
In the above, we determine the value of m in FFS. We 

simulate the 8-port load-balanced switch using FFS (m=6), UFS, 
and FOFF. Figure 6 shows their mean delay-traffic load curves. 

Figure 4 shows that the mean delay of FFS is apparently less 
than that of UFS, especially in a low traffic load. The reason for 
this is that it needs more time to form a full frame in a low 
traffic load in UFS, and the mean delay decreases with the 
increase of traffic load. When the traffic load is less than 0.2, 
the mean delay of FFS is larger than that of FOFF. This is 
because FFS needs to stuff more “idle packets” in full frame 
with low traffic load and can not sufficiently utilize the 
bandwidth of the switch. But when traffic load increases, the 
mean delay of FFS is less than that of FOFF. The reason is that 
in FOFF the input requires transferring packets uniformly to 
the intermediate inputs and can not efficiently use the N 
timeslots to send packets. 

 

 

Fig. 4. Mean delay-traffic load curves in FFS, UFS, and FOFF.
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V. Conclusion 

We propose a novel algorithm called full framed stuff (FFS), 
which can keep the packets in order throughout the load-
balanced switch. FFS can provide good switching performance 
(as throughput and delay). FFS is also a distributed algorithm, 
and each port can operate independently.   
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