• Title/Summary/Keyword: two-layered cylindrical shells

Search Result 4, Processing Time 0.017 seconds

Axisymmetric vibrations of layered cylindrical shells of variable thickness using spline function approximation

  • Viswanathan, K.K.;Kim, Kyung Su;Lee, Jang Hyun;Lee, Chang Hyun;Lee, Jae Beom
    • Structural Engineering and Mechanics
    • /
    • v.28 no.6
    • /
    • pp.749-765
    • /
    • 2008
  • Free axisymmetric vibrations of layered cylindrical shells of variable thickness are studied using spline function approximation techniques. Three different types of thickness variations are considered namely linear, exponential and sinusoidal. The equations of axisymmetric motion of layered cylindrical shells, on the longitudinal and transverse displacement components are obtained using Love's first approximation theory. A system of coupled differential equations on displacement functions are obtained by assuming the displacements in a separable form. Then the displacements are approximated using Bickley-spline approximation. The vibrations of two-layered cylindrical shells, made up of several types of layered materials and different boundary conditions are considered. Parametric studies have been made on the variation of frequency parameter with respect to the relative layer thickness, length ratio and type of thickness variation parameter.

A Elastic Analysis for the Impact Response Analysis of Two-Layered Cylindrical Shells (2층 원통쉘의 탄성 충격응답 해석)

  • Park, Sung Jin;MIKAMI, Takashi
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.639-648
    • /
    • 2000
  • A model analysis is used to predict the impact response of a simply supported elastic circular cylindrical shell composed of two bonded isotropic layers. The governing equations for a two-layered cylindrical shell are derived on the basis of an improved theory for the single-layer shell which includes the effects of transverse shear deformation and rotary inertia. Calculations are made for the specific case of the steel-concrete cylindrical shell subjected to a suddenly applied load. The solutions show that the method yields very good results. Therefore the proposed method is useful not only for a better investigating of the response characteristics of the shell but also available for a check on other numerical methods such a FEM.

  • PDF

Free vibration analysis of composite cylindrical shells with non-uniform thickness walls

  • Javed, Saira;Viswanathan, K.K.;Aziz, Z.A.
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.1087-1102
    • /
    • 2016
  • The paper proposes to characterize the free vibration behaviour of non-uniform cylindrical shells using spline approximation under first order shear deformation theory. The system of coupled differential equations in terms of displacement and rotational functions are obtained. These functions are approximated by cubic splines. A generalized eigenvalue problem is obtained and solved numerically for an eigenfrequency parameter and an associated eigenvector which are spline coefficients. Four and two layered cylindrical shells consisting of two different lamination materials and plies comprising of same as well as different materials under two different boundary conditions are analyzed. The effect of length parameter, circumferential node number, material properties, ply orientation, number of lay ups, and coefficients of thickness variations on the frequency parameter is investigated.

Actual fatigue reliability of structural material: Vibration efficiency

  • Hussain, Muzamal;Khadimallah, Mohamed A.;Ayed, Hamdi;Alshoaibi, Adil;Loukil, Hassen;Alsoruji, Ghazi;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • v.13 no.4
    • /
    • pp.327-337
    • /
    • 2022
  • This paper is concerned with the vibration analysis of middle layer cylindrical shell made of functionally graded material. The outer layers and inner layer are composed of functionally graded and isotropic material respectively. The Rayleigh Ritz method is applied to solve the presented shell dynamics equations. Two configurations are constructed with layers distributions. Fundamental natural frequencies of the three layered cylindrical shell is plotted against the circumferential wave number with different power law exponents. The frequency decreases with the increase of power law exponent. The fundamental natural frequencies first decreases and fall down to its minimum value, after frequencies increases with circumferential wave number. This is due to change in the magnitude of extensional and bending energies of the cylindrical shells. The computer software MATLAB has been employed for the computation of presented frequencies and tested the results obtained in order to assess the accuracy and validity of the cylindrical shell model for predicting the vibration frequencies of cylindrical shell.