Browse > Article
http://dx.doi.org/10.12989/scs.2016.20.5.1087

Free vibration analysis of composite cylindrical shells with non-uniform thickness walls  

Javed, Saira (UTM Centre for Industrial and Applied Mathematics (UTM-CIAM), Ibnu SIna Institiute for Scientific & Industrial Research, Universiti Teknologi Malaysia)
Viswanathan, K.K. (UTM Centre for Industrial and Applied Mathematics (UTM-CIAM), Ibnu SIna Institiute for Scientific & Industrial Research, Universiti Teknologi Malaysia)
Aziz, Z.A. (UTM Centre for Industrial and Applied Mathematics (UTM-CIAM), Ibnu SIna Institiute for Scientific & Industrial Research, Universiti Teknologi Malaysia)
Publication Information
Steel and Composite Structures / v.20, no.5, 2016 , pp. 1087-1102 More about this Journal
Abstract
The paper proposes to characterize the free vibration behaviour of non-uniform cylindrical shells using spline approximation under first order shear deformation theory. The system of coupled differential equations in terms of displacement and rotational functions are obtained. These functions are approximated by cubic splines. A generalized eigenvalue problem is obtained and solved numerically for an eigenfrequency parameter and an associated eigenvector which are spline coefficients. Four and two layered cylindrical shells consisting of two different lamination materials and plies comprising of same as well as different materials under two different boundary conditions are analyzed. The effect of length parameter, circumferential node number, material properties, ply orientation, number of lay ups, and coefficients of thickness variations on the frequency parameter is investigated.
Keywords
free vibration; anti-symmetric; non-uniform thickness; shear deformation; spline approximation; frequency parameter;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Zeighampour, H. and Beni, Y. (2015), "A shear deformable cylindrical shell model based on couple stress theory", Arch. Appl. Mech., 85(4), 539-553. DOI: 10.1007/s00419-014-0929-8   DOI
2 Zeighampour, H., Beni, Y.T. and Mehralian, F. (2015), "A shear deformable conical shell formulation in the framework of couple stress theory", Acta Mechanica, 226(8), 1-23.   DOI
3 Zerin, Z. (2013), "On the vibration of laminated nonhomogeneous orthotropic shells", Meccanica, 48(7), 1557-1572.   DOI
4 Alibeigloo, A. (2009), "Static and vibration analysis of axi-symmetric angle-ply laminated cylindrical shell using state space differential quadrature method", Int. J. Pres. Ves. Pip., 86(11), 738-747.   DOI
5 Alibeigloo, A. and Shakeri, M. (2007), "Elasticity solution for the free vibration analysis of Laminated cylindrical panels using the differential quadrature method", Compos. Struct., 81(1), 105-113.   DOI
6 Alibeigloo, A., Kani, A.M. and Pashaei, M.H. (2012), "Elasticity solution for the free vibration analysis of functionally graded cylindrical shell bonded to thin piezoelectric layers", Int. J. Pres. Ves. Pip., 89, 98-111.   DOI
7 Asgari, M. (2015), "Material distribution optimization of 2D heterogeneous cylinder under thermomechanical loading", Struct. Eng. Mech., Int. J., 53(4), 703-723.   DOI
8 Bickley, W.G. (1968), "Piecewise cubic interpolation and two-point boundary problems", Comput. J., 11(2), 206-208.   DOI
9 Beni, Y.T. and Zeverdejani, M.K. (2014), "Free vibration of microtubules as elastic shell model based on modified couple stress theory", J. Mech. Med. Biol., 15(3), 1550037.   DOI
10 Chaudhuri, R.A. and Abu-Arja, K.R. (1991), "Static analysis of moderately-thick finite antisymmetric angleply cylindrical panels and shells", Int. J. Solid. Struct., 28(1), 1-15.   DOI
11 Chattibi, F., Benrahou, K.H., Benachour, A., Nedri, K. and Tounsi, A. (2015), "Thermomechanical effects on the bending of antisymmetric cross-ply composite plates using a four variable sinusoidal theory", Steel Compos. Struct., Int. J., 19(1), 93-110.   DOI
12 Chorfi, S. and Houmat, A. (2010), "Non-linear free vibration of a functionally graded doubly-curved shallow shell of elliptical plan-form", Compos. Struct., 92(10), 2573-2581.   DOI
13 George, H.S. (1999), Laminar Composites, Butterworth-Heinemann Publications, USA.
14 Edalat, P., Khedmati, M.R. and Soares, C.G. (2014), "Free vibration analysis of open thin deep shells with variable radii of curvature", Meccanica, 49(6), 1385-1405.   DOI
15 Featherston, D. and Barabasz, M. (2000), "Loudspeaker response improvement using cone thickness variation", J. Audio Eng. Soc., 48(12), 1216-1220.
16 Ferreira, A.J.M., Carrera, E. and Cinefra, M. (2011), "Analysis of laminated doubly-curved shellsby a layerwise theory and radial basis functions collotion, accounting for through-the-thickness deformations", Comput. Mech., 48(1), 13-25.   DOI
17 Hosseini-Hashemi, S., Abaei, A.R. and Ilkhani, M.R. (2015), "Free vibrations of functionally graded viscoelastic cylindrical panel under various boundary conditions", Compos. Struct., 126, 1-15.   DOI
18 Javed, S., Viswanathan, K.K., Aziz, Z.A. and Prabakar, K. (2016), "Free vibration of anti-symmetric angleply plates with variable thickness", Compos. Struct., 137, 56-69.   DOI
19 Kang, J.H. (2012), "Three-dimensional vibration of joined thick conical-cylindrical shells of revolution with variable thickness", J. Sound Vib., 331(18), 4187-4198.   DOI
20 Kar, V.R. and Panda, S.K. (2015), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., Int. J., 18(3), 693-709.   DOI
21 Katariya, P.V., Panda, S.K. and Isikveren, A. (2015), "Thermal buckling and vibration analysis of laminated composite curved shell panel", Aircr. Eng. Aerosp. Technol., 88(1), 97-107.   DOI
22 Lopatin, A.V. and Morozov, E.V. (2015), "Fundamental frequency of the laminated composite cylindrical shell with clamped edges", Int. J. Mech. Sci., 92, 35-43.   DOI
23 Khalifa, A.M. (2012), "A solution of free vibration and stability problem of an axially loaded cylindrical shell with a four lobed cross section of variable thickness", Kuwait J. Sci. Eng., 39(2), 69-90.
24 Khan, K., Patel, B.P. and Nath, Y. (2015), "Free and forced vibration characteristics of bimodular composite laminated circular cylindrical shells", Compos. Struct., 126, 386-397.   DOI
25 Liew, K.M., Bergman, L.A., Ng, T.Y. and Lam, K.Y. (2000), "Three-dimensional vibration of cylindrical shell panels-solution by continuum and discrete approaches", Computat. Mech., 26(2), 208-221.   DOI
26 Mahapatra, T. and Panda, S. (2015), "Thermoelastic vibration analysis of laminated doubly curved shallow panels using non-linear FEM", J. Therm. Stress., 38(1), 39-68.   DOI
27 Mahapatra, T., Kar, V. and Panda, S. (2014), "Large amplitude vibration analysis of laminated composite spherical panels under hygrothermal environment", Int. J. Struct. Stab. Dy., 16, 1450105.
28 Mahapatra, T.R., Kar, V.R. and Panda, S.K. (2015), "Nonlinear free vibration analysis of laminated composite doubly curved shell panel in hygrothermal environment", J. Sandw. Struct. Mater., 1099636215577363.
29 Narita, Y., Ohta, Y., Yamada, G. and Kobayashi, Y. (1992), "Analytical method for vibration of angle-ply cylindrical shells having arbitrary edges", AIAA journal, 30(3), 790-796.   DOI
30 Nguyen, K.T., Thai, T.H. and Vo, T.P. (2015), "A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18 (1), 91-120.   DOI
31 Qu, Y., Long, X., Wu, S. and Meng, G. (2013), "A unified formulation for vibration analysis of composite lamniated shells of revolution including shear deformation and rotary inertia", Compos. Struct., 98, 169-191.   DOI
32 Pai, P.F. and Schulz, M.J. (1999), "Shear correction factors and an energy-consistent beam theory", Int. J. Solid. Struct., 36(10), 1523-1540.   DOI
33 Panda, S. and Mahapatra, T. (2014), "Nonlinear finite element analysis of laminated composite spherical shell vibration under uniform thermal loading", Meccanica, 49(1), 191-213.   DOI
34 Panda, S. and Singh, B. (2009), "Nonlinear free vibration of spherical shell panel using higher order shear deformation theory-a finite element approach", Int. J. Pres. Ves. Pip., 86(6), 373-383.   DOI
35 Sahan, M.F. (2015), "Transient analysis of cross-ply laminated shells using FSDT: Alternative formulation", Steel Compos. Struct., Int. J., 18(4), 889-907.   DOI
36 Sahoo, S.S., Panda, S.K. and Singh, V.K. (2015), "Experimental and numerical investigation of static and free vibration responses of woven glass/epoxy laminated composite plate", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials Design and Applications, 1464420715600191.
37 Selahi, E., Setoodeh, A.R. and Tahani, M. (2014), "Three-dimentional transient analysis of functionally graded truncated conical shells with variable thickness subjected to an asymmetric dynamic pressure", Int. J. Pres. Ves. Pip., 119, 29-38.   DOI
38 Shao, Z.S. and Ma, G.W. (2007), "Free vibration analysis of laminated cylindrical shells by using fourier series expansion method", J. Thermoplast. Compos. Mater., 20(6), 551-573.   DOI
39 Soldatos, K.P. and Messina, A. (2001), "The influence of boundary conditions and transverse shear on the vibration of angle-ply laminated plates, circular cylinders and cylindrical panels", Comput. Method. Appl. Mech. Eng., 190(18-19), 2385-2409.   DOI
40 Sofiyev, A.H. and Kuruoglu, N. (2015), "Buckling of non-homogeneous orthotropic conical shells subjected to combined load", Steel Compos. Struct., Int. J., 19(1), 1-19.   DOI
41 Viswanathan, K.K., Kim, K.S., Lee, J.H., Koh, H.S. and Lee, J.B. (2008), "Free vibration of multilayered circular cylindrical shell with cross-ply walls, including shear deformation by using spline function method", J. Mech. Sci. Technol., 22(11), 2062-2075.   DOI
42 Viswanathan, K.K. and Kim, K.S. (2008), "Free vibration of antisymmetric angle-ply-laminated plates including shear deformation: Spline method", Int. J. Mech. Sci., 50(10-11), 1476-1485.   DOI
43 Viswanathan, K., Javed, S., Prabakar, K., Aziz, Z.A. and Bakar, I.A. (2015a), "Free vibration of antisymmetric angle-ply laminated conical shells", Compos. Struct., 122, 488-495.   DOI
44 Viswanathan, K., Aziz. Z.A., Javed., S., Yaacob, Y. and Pullepu, B. (2015b), "Free vibration of symmetric angle ply truncated conical shells under different boundary conditions using spline method", Journal of Mech. Sci. Technol., 29(5), 2073-2080.   DOI
45 Viswanathan, K.K., Javed, S., Aziz, Z.A. and Prabakar, K. (2015c), "Free vibration of symmetric angle-ply laminated annular circular plate of variable thickness under shear deformation theory", Meccanica, 50(12), 3013-3027.   DOI
46 Viswanathan, K.K. and Javed, S. (2016), "Free vibration of anti-symmetric angle-ply cylindrical shell walls using first-order shear deformation theory", J. Vib. Control, 1077546314544893.