Browse > Article
http://dx.doi.org/10.12989/acc.2022.13.4.327

Actual fatigue reliability of structural material: Vibration efficiency  

Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad)
Khadimallah, Mohamed A. (Civil Engineering Department, College of Engineering, Prince Sattam Bin Abdulaziz University)
Ayed, Hamdi (Department of Civil Engineering, College of Engineering, King Khalid University)
Alshoaibi, Adil (Department of Physics, College of Science, King Faisal University)
Loukil, Hassen (Department of Electrical Engineering, College of Engineering, King Khalid University)
Alsoruji, Ghazi (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University)
Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
Publication Information
Advances in concrete construction / v.13, no.4, 2022 , pp. 327-337 More about this Journal
Abstract
This paper is concerned with the vibration analysis of middle layer cylindrical shell made of functionally graded material. The outer layers and inner layer are composed of functionally graded and isotropic material respectively. The Rayleigh Ritz method is applied to solve the presented shell dynamics equations. Two configurations are constructed with layers distributions. Fundamental natural frequencies of the three layered cylindrical shell is plotted against the circumferential wave number with different power law exponents. The frequency decreases with the increase of power law exponent. The fundamental natural frequencies first decreases and fall down to its minimum value, after frequencies increases with circumferential wave number. This is due to change in the magnitude of extensional and bending energies of the cylindrical shells. The computer software MATLAB has been employed for the computation of presented frequencies and tested the results obtained in order to assess the accuracy and validity of the cylindrical shell model for predicting the vibration frequencies of cylindrical shell.
Keywords
circumferential wave number, dynamics equations, functionally graded material; fundamental natural frequencies, MATLAB;
Citations & Related Records
Times Cited By KSCI : 17  (Citation Analysis)
연도 인용수 순위
1 Akbas, S.D. (2018), "Forced vibration analysis of cracked nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(8), 1-11. https://doi.org/10.1007/s40430-018-1315-1.   DOI
2 Amabili, M., Pellicano, F. and Paidoussis M.P. (1998), "Nonlinear vibrations of simply Love, A.E.H. (1888), "On the small free vibrations and deformation of thin elastic shell", Phil. Trans. R. Soc. London, A179, 491-549. https://doi.org/10.1098/rsta.1888.0016.   DOI
3 Fattahi, A.M., Safaei, B., Qin, Z. and Chu, F. (2021), "Experimental studies on elastic properties of high density polyethylene-multi walled carbon nanotube nanocomposites", Steel Compos. Struct., 38(2), 177-187. https://doi.org/10.12989/scs.2021.38.2.177.   DOI
4 Mirjavadi, S.S., Forsat, M., Nia, A.F., Badnava, S. and Hamouda, A.M.S. (2020b), "Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells", Adv. Nano Res., 8(2), 149-156. https://doi.org/10.12989/anr.2020.8.2.149.   DOI
5 Lata, P. and Kaur, H. (2019), "Deformation in transversely isotropic thermoelastic medium using new modified couple stress theory in frequency domain", Geomech. Eng., 19(5), 369-381. https://doi.org/10.12989/gae.2019.19.5.369.   DOI
6 Li, H. and Lam, K.Y. (1998), "Frequency characteristics of a thin rotating cylindrical shell using the generalized differential quadrature method", Int. J. Mech. Sci., 40(5), 443-459. https://doi.org/10.1016/S0020-7403(97)00057-X.   DOI
7 Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020a), "Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection", Steel Compos. Struct., 35(4), 567-578. https://doi.org/10.12989/scs.2020.35.4.567.   DOI
8 Pan, S., Dai, Q., Safaei, B., Qin, Z. and Chu, F. (2021), "Damping characteristics of carbon nanotube reinforced epoxy nanocomposite beams", Thin Wall. Struct., 166, 108127. https://doi.org/10.1016/j.tws.2021.108127.   DOI
9 Safaei, B. (2021), "Frequency-dependent damped vibrations of multifunctional foam plates sandwiched and integrated by composite faces", Eur. Phys. J. Plus, 136(6), 1-16. https://doi.org/10.1140/epjp/s13360-021-01632-4.   DOI
10 Safaei, B., Fattahi, A.M. and Chu, F. (2018), "Finite element study on elastic transition in platelet reinforced composites", Microsyst. Tech., 24(6), 2663-2671. https://doi.org/10.1007/s00542-017-3651-y.   DOI
11 Safaei, B., Naseradinmousavi, P. and Rahmani, A. (2016), "Development of an accurate molecular mechanics model for buckling behavior of multi-walled carbon nanotubes under axial compression", J. Mole. Graphic. Model., 65, 43-60. https://doi.org/10.1016/j.jmgm.2016.02.001.   DOI
12 Loy, C.T. and Lam, K.Y. (1997), "Vibration of cylindrical shells with ring supports", J. Mech. Eng., 39, 455-471. https://doi.org/10.1016/S0020-7403(96)00035-5.   DOI
13 Safaei, B. (2020), "The effect of embedding a porous core on the free vibration behavior of laminated composite plates", Steel Compos. Struct., 35(5), 659-670. https://doi.org/10.12989/scs.2020.35.5.659.   DOI
14 Suresh, S. and Mortensen, A. (1997), "Functionally gradient metals and metal ceramic composites", Part 2 Therm. Mech. Behav. Int. Mater., 42, 85-116. https://doi.org/10.1179/imr.1997.42.3.85.   DOI
15 Fattahi, A.M., Safaei, B. and Ahmed, N.A. (2019), "A comparison for the non-classical plate model based on axial buckling of single-layered graphene sheets", Eur. Phys. J. Plus, 134(11), 555. https://doi.org/10.1140/epjp/i2019-12912-7.   DOI
16 Ghosh, A., Miyamoto, Y., Reimanis, I. and Lannutti, J.J. (1997), "Functionally graded materials, manufacture, properties and applications", Am. Ceram. Soc., 76, 171-189.
17 Lam, K.Y. and Loy, C.T. (1998), "Influence of boundary conditions for a thin laminated rotating cylindrical shell", Compos. Struct., 41, 215-228. https://doi.org/10.1016/S0263-8223(98)00012-9.   DOI
18 Najafizadeh, M.M. and Isvandzibaei, M.R. (2007), "Vibration of (FGM) cylindrical shells based on higher order shear deformation plate theory with ring support", Acta Mechanica, 191, 75-91. http/10.1007/s00707-006-0438-0.   DOI
19 Padovan, J. (1975), "Travelling waves vibrations and buckling of rotating anisotropic shells of revolution by finite element", Int. J. Solid Struct., 11(12), 1367-1380. https://doi.org/10.1016/0020-7683(75)90064-5.   DOI
20 Sharma, P., Singh, R. and Hussain, H, (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science, 234(5), 1085-1101. https://doi.org/10.1177/0954406219888234.   DOI
21 Chen, Y., Zhao, H.B. and Shea, Z.P. (1993), "Vibrations of high speed rotating shells with calculations for cylindrical shells", J. Sound Vib., 160, 137-160. https://doi.org/10.1006/jsvi.1993.1010.   DOI
22 Penzes, R.L.E. and Kraus H. (1972), "Free vibrations of pre-stresses cylindrical shells having arbitrary homogeneous boundary conditions", AIAA J., 10, 1309. https://doi.org/10.2514/3.6605.   DOI
23 Chen, Y., Zhao, H.B. and Shin, Z.P. (1993), "Vibration of high speed rotating shells with calculation for cylindrical shells", J. Sound Vib., 160, 137. https://doi.org/10.1006/jsvi.1993.1010.   DOI
24 Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579.   DOI
25 Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039.   DOI
26 Akbas, S.D. (2020), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., 8(4), 277-282. https://doi.org/10.12989/anr.2020.8.4.277.   DOI
27 Bouazza, M., Antar, K., Amara, K., Benyoucef, S., and Bedia, E. A.A. (2019), "Influence of temperature on the beams behavior strengthened by bonded composite plates", Geomech. Eng., 18(5), 555-566. https://doi.org/10.12989/gae.2019.18.5.555.   DOI
28 Bryan, G.H. (1890), "On the beats in the vibration of revolving cylinder", Proceedings of the Cambridge philosophical Society, 7, 101-111.
29 Chung, H., Turula, P. Mulcahy, T.M., and Jendrzejczyk, J.A. (1981), "Analysis of cylindrical shell vibrating in a cylindrical fluid region", Nucl. Eng. Des., 63(1), 109-1012. https://doi.org/10.1016/0029-5493(81)90020-0.   DOI
30 Arefi, M. and Zur, K.K. (2020), "Free vibration analysis of functionally graded cylindrical nanoshells resting on Pasternak foundation based on two-dimensional analysis", Steel Compos. Struct., 34(4), 615-623. https://doi.org/10.12989/scs.2020.34.4.61.   DOI
31 Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A., and Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.   DOI
32 Civalek, O. and Jalaei, M.H. (2020), "Buckling of carbon nanotube (CNT)-reinforced composite skew plates by the discrete singular convolution method", Acta Mechanica, 231(6), 2565-2587.   DOI
33 Fox, C.H.J. and Hardie, D.J.W. (1985), "Harmonic response of rotating cylindrical shell", J. Sound Vib., 101, 495-510. https://doi.org/10.1016/S0022-460X(85)80067-5.   DOI
34 Civalek, O . (2020), "Vibration of functionally graded carbon nanotube reinforced quadrilateral plates using geometric transformation discrete singular convolution method", Int. J. Numer. Method. Eng., 121(5), 990-1019.   DOI
35 Di Taranto, R. A. and Lessen, M. (1964), "Coriolis acceleration effect on the vibration of rotating thin-walled circular cylinder", Trans. ASME J. Appl. Mech., 31, 700-701. https://doi.org/10.1115/1.3629733.   DOI
36 Ergin, A. and Temarel, P. (2002), "Free vibration of a partially liquid-filled and submerged, horizontal cylindrical shell", J. Sound Vib., 254(5), 951-965. https://doi.org/10.1006/jsvi.2001.4139.   DOI
37 Koizumi, M.F.G.M. (1997), "FGM activities in Japan", Compos. Part B Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.   DOI
38 Lam K.Y. and Loy, C.T. (1994), "On vibration of thin rotating laminated composite cylindrical shells", J. Sound Vib., 116, 198. https://doi.org/10.1016/0961-9526(95)91289-S.   DOI
39 Uyar, G.G. and Aksoy, C.O. (2019), "Comparative review and interpretation of the conventional and new methods in blast vibration analyses", Geomech. Eng., 18(5), 545-554. https://doi.org/10.12989/gae.2019.18.5.545   DOI
40 Swaddiwudhipong. S., Tian. J. and Wang C.M. (1995), "Vibration of cylindrical shells with ring supports", J. Sound Vib., 187(1), 69-93. https://doi.org/10.1006/jsvi.1995.0503.   DOI
41 Wang S. S. and Chen, Y. (1974), "Effects of rotation on vibrations of circular cylindrical shells", J. Acoust. Soc. Am., 55, 1340-1342. https://doi.org/10.1121/1.1914708.   DOI
42 Akbas, S.D. (2019), "Axially forced vibration analysis of cracked a nanorod", J. Comput. Appl. Mech., 50(1), 63-68. http://doi.org/10.22059/jcamech.2019.281285.392.   DOI
43 Yan, K., Zhang, Y., Cai, H. and Tahouneh, V. (2020), "Vibrational characteristic of FG porous conical shells using Donnell's shell theory", Steel Compos. Struct., 35(2), 249-260.https://doi.org/10.12989/scs.2020.35.2.249.   DOI
44 Zohar, A. and Aboudi, J. (1973), "The free vibrations of thin circular finite rotating cylinder", Int. J. Mech. Sci., 15, 269-278. https://doi.org/10.1016/0020-7403(73)90009-X.   DOI
45 Ahmad, M. and Naeem, M.N. (2009), "Vibration characteristics of rotating FGM circular cylindrical shell using wave propagation method", Eur. J. Sci. Res., 36(2), 184-235.
46 Akbas S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stab. Dyn., 17(3), 1750033. https://doi.org/10.1142/S021945541750033X.   DOI
47 Akbas, S.D. (2016a), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125.   DOI
48 Akbas, S.D. (2017b), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009.   DOI
49 Akbas, S.D. (2018b), "Bending of a cracked functionally graded nanobeam", Advances Nano Res., 6(3), 219-242. https://doi.org/10.12989/anr.2018.6.3.219.   DOI
50 Alzabeebee, S. (2020), "Dynamic response and design of a skirted strip foundation subjected to vertical vibration", Geomech. Eng., 20(4), 345-358. https://doi.org/10.12989/gae.2020.20.4.345.   DOI
51 Bouanati, S., Benrahou, K.H., Atmane, H.A., Yahia, S.A., Bernard, F., Tounsi, A., and Bedia, E.A. (2019), "Investigation of wave propagation in anisotropic plates via quasi 3D HSDT", Geomech. Eng., 18(1), 85-96. https://doi.org/10.12989/gae.2019.18.1.085.   DOI
52 Sivadas, K.R. and Ganesan, N. (1964), "Effect of rotation on vibrations of moderately thin cylindrical shell", J. Vib. Acoust., 116(1), 198-202. https://doi.org/10.1115/1.2930412.   DOI
53 Safaei, B. and Fattahi, A.M. (2017), "Free vibrational response of single-layered graphene sheets embedded in an elastic matrix using different nonlocal plate models", Mech., 23(5), 678-687. https://doi.org/10.5755/j01.mech.23.5.14883.   DOI
54 Safaei, B., Moradi-Dastjerdi, R., Qin, Z., Behdinan, K. and Chu, F. (2021a), "Determination of thermoelastic stress wave propagation in nanocomposite sandwich plates reinforced by clusters of carbon nanotubes", J. Sandw. Struct. Mater., 23(3), 884-905. https://doi.org/10.1177/1099636219848282.   DOI
55 Safaei, B., Moradi-Dastjerdi, R., Qin, Z., Behdinan, K. and Chu, F. (2021b), "Determination of thermoelastic stress wave propagation in nanocomposite sandwich plates reinforced by clusters of carbon nanotubes", J. Sandw. Struct. Mater., 23(3), 884-905. https://doi.org/10.1177/1099636219848282.   DOI
56 Saito, T. and Endo, M. (1986), V"ibrations of finite length rotating cylindrical shell", J. Sound Vib., 107, 17. https://doi.org/10.1016/0022-460X(86)90279-8.   DOI
57 Sewall, J.L. and Naumann, E.C. (1968), An Experimental and Analytical Vibration Study of Thin Cylindrical Shells with and without Longitudinal Stiffeners, National Aeronautic and Space Administration.
58 Srinivasan, A.V. and Luaterbach, G.F. (1971), "Travelling waves in rotating cylindrical shells", Trans. ASME J. Eng. Indust., 93, 1229-1232. https://doi.org/10.1115/1.3428067.   DOI