• 제목/요약/키워드: two-fluid flow

검색결과 1,933건 처리시간 0.026초

VOF 방법에 의한 이동하는 자유표면이 존재하는 유동의 유한요소 해석 (Finite element analysis of flow with moving free surface by volume of fluid method)

  • 신수호;이우일
    • 대한기계학회논문집B
    • /
    • 제21권9호
    • /
    • pp.1230-1243
    • /
    • 1997
  • A numerical technique for simulating incompressible viscous flow with free surface is presented. The flow field is obtained by penalty finite element formulation. In this work, a modified volume of fluid (VOF) method which is compatible with 4-node element is proposed to track the moving free surface. This scheme can be applied to irregular mesh system, and can be easily extended to three dimensional geometries. Numerical analyses were done for two benchmark examples, namely the broken dam problem and the solitary wave propagation problem. The numerical results were in close agreement with the existing data. Illustrative examples were studied to show the effectiveness of the proposed numerical scheme.

회전원통으로부터의 싱크 유동 (A Sink Flow from a Rotating Tank)

  • 서용권;여창호
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 추계학술대회 논문집
    • /
    • pp.36-39
    • /
    • 2004
  • In this study, we present the theoretical, numerical and experimental results of the sink flow from a rotating, circular tank Strikingly enough, when the upper free surface was set with no-slip boundary conditions, the Ekman boundary-layer develops not only above the bottom surface but under the free surface. The sink fluid is coming from the two Ekman layers, and the mass transfer from the bulk, inviscid region is dependent on the rotational speed. It is also remarkable to see that all the fluid gathered along the axis flows through a rapidly rotating fluid column with almost the same size as the hole.

  • PDF

예조건화 Navier-Stokes 코드를 이용한 교각 유동해석 (The analysis of flow over the bridge using preconditioned Navier-Stokes code)

  • 유일용;이승수;박시형
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.13-16
    • /
    • 2008
  • After the collapse of the Tacoma bay bridge at Tacoma Washington, the accurate prediction of aerodynamics became crucial to the sound design of bridges. CFD(Computational Fluid Dynamics) becomes important tool for the prediction on wind effects on the bridge due to the recent development of CFD. The usage of CFD is further prompted by the advantages in using CFD, such as low-cost and fast feed-back of design. In this paper, an unsteady compressible Reynolds averaged Navier-Stokes code is used for the computation of the flow over bridges. Coakley's ��q-${\omega}$ �� two-equation turbulence model is used for the turbulent eddy viscosity. For accurate and stable computations, the local preconditioning method is adapted to the code. Aerodynamic characteristics of a couple bridges are presented to show the validity and the accuracy of the method.

  • PDF

Physical and Numerical Investigation of Cavitating Flow-Induced Vibration of a Flexible Hydrofoil

  • Wu, Qin;Wang, Guoyu;Huang, Biao
    • International Journal of Fluid Machinery and Systems
    • /
    • 제10권3호
    • /
    • pp.188-196
    • /
    • 2017
  • The objective of this paper is to investigate the flow-induced vibration of a flexible hydrofoil in cavitating flows via combined experimental and numerical studies. The experiments are presented for the modified NACA66 hydrofoil made of POM Polyacetate in the closed-loop cavitation tunnel and the numerical investigations are performed using a hybrid coupled fluid structure interaction model. The results showed that with the decreasing of cavitation number, the vibration magnitude increases dramatically for the cloud cavitation and declines for the supercavitation. The cloud cavitation development strongly affects the vibration response, with the main frequency of the vibration being accordance with the cavity shedding frequency and other two frequencies corresponding to the bending and twisting frequencies.

크랙을 가진 유체유동 회전 외팔 파이프의 안정성 해석 (Stability Analysis of Rotating Cantilever Pipe Conveying Fluid with Crack)

  • 손인수;윤한익;김동진
    • 한국소음진동공학회논문집
    • /
    • 제17권12호
    • /
    • pp.1161-1169
    • /
    • 2007
  • In this paper, the dynamic stability of a rotating cantilever pipe conveying fluid with a crack is investigated by the numerical method. That is, the influence of the rotating angular velocity, mass ratio and crack severity on the critical flow velocity for flutter instability of system are studied. The equations of motion of rotating cantilever pipe are derived by using extended Hamilton's principle. The crack section of pipe is represented by a local flexibility matrix connecting two undamaged pipe segments. The crack is assumed to be in the first mode of fracture and always opened during the vibrations. Generally, the critical flow velocity for flutter is proportional to the rotating angular velocity of a pipe. Also, the critical flow velocity and stability maps of the rotating pipe system for the variation each parameter are obtained.

승용차용 연속가변 ER댐퍼의 성능연구 (Performance Investigation of a Continuously Variable ER Damper for Passenger Vehicles)

  • 김기선;장유진;최승복;정재천;서문석;여문수
    • 한국자동차공학회논문집
    • /
    • 제3권6호
    • /
    • pp.69-77
    • /
    • 1995
  • This paper presents performance investigation of a continuously variable ER(Electro-Rheological) damper for passenger vehicles. A dynamic model of the damper is formulated by incorporating electric field-dependent Bingham properties of the ER fluid. The Bingham properties are experimentally obtained through Couette type electroviscous measurement with respect to two different particle concentrations. The governing equation of the hydraulic model treating three components of fluid resistances;electrode duct flow, check valve flow and piston gap flow, is achieved via the bond graph method. A prototype ER damper is then designed and manufactured on the basis of parameter analysis. The damping forces of the system are experimentally evaluated by changing the intensity of the electric field, the particle concentration and the electrode gap.

  • PDF

Settlement of velocity dissemination with fluid parameters for the configuration of stretching cylinder

  • Jalil, Mudassar;Iqbal, Waheed;Hussain, Muzamal;Khadimallah, Mohamed A.;Alshoaibi, Adil;Baili, Jamel;Khedher, Khaled Mohamed;Ali, Elimam Abdallah;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제42권3호
    • /
    • pp.389-396
    • /
    • 2022
  • This investigation in fluid mechanics surrounds around the variety of flow problems for different fluids along the stretching cylinder. Numerical procedure is carried out for the obtained resultant equations by Keller-Box technique. Numerical study of laminar, steady, viscous and incompressible two dimensional boundary layer flow of effects of suction and blowing on boundary layer slip flow of Casson fluid along permeable exponentially stretching cylinder has been carried out in the present draft. physical parameters i.e., Nusselt number and skin friction coefficient, suction parameter and the local Reynold number are investigated on velocity profile and elaborated through proper graphs and table.

Finite Element Analysis of Fluid Flows with Moving Boundary

  • Cha, Kyung-Se;Park, Jong-Wook;Park, Chan-Guk
    • Journal of Mechanical Science and Technology
    • /
    • 제16권5호
    • /
    • pp.683-695
    • /
    • 2002
  • The objective of the present study is to analyze the fluid flow with moving boundary using a finite element method. The algorithm uses a fractional step approach that can be used to solve low-speed flow with large density changes due to intense temperature gradients. The explicit Lax-Wendroff scheme is applied to nonlinear convective terms in the momentum equations to prevent checkerboard pressure oscillations. The ALE (Arbitrary Lagrangian Eulerian) method is adopted for moving grids. The numerical algorithm in the present study is validated for two-dimensional unsteady flow in a driven cavity and a natural convection problem. To extend the present numerical method to engine simulations, a piston-driven intake flow with moving boundary is also simulated. The density, temperature and axial velocity profiles are calculated for the three-dimensional unsteady piston-driven intake flow with density changes due to high inlet fluid temperatures using the present algorithm. The calculated results are in good agreement with other numerical and experimental ones.

마이크로 홀로그래픽 PTV를 이용한 미세곡관 내부 Dean 유동의 3차원 유동해석 (Micro Holographic PTV Analysis of Three-dimensional Dean Flows in a Curved Micro-tube)

  • 김석;이상준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.689-690
    • /
    • 2008
  • In the present study, a micro holographic PTV (HPTV) system was used to experimentally investigate the structure of 3D flow within a curved micro-tube with varying Dean number. The employed HPTV system incorporated a high-speed digital camera to measure the temporal evolution of the 3D velocity fields of micro-scale fluid flows. With increasing Dean number, flow in the curved tube is transformed from a steady flow to a secondary flow with two counter-rotating vortices. In this study, to analyze the 3D flow characteristics in the curved section of tube at a high Dean number, the trajectories of fluid particles were obtained experimentally using the whole 3D velocity field data obtained by the micro HPTV technique. The mean velocity field distribution was then obtained by ensemble averaging the instantaneous velocity fields. These results would be helpful in the design of various passages within micro-scale devices or micro-chips and in understanding the mixing phenomena that occur in curved conduits along the trajectories of fluid particles.

  • PDF

경계조건에 따른 다중벽 탄소나노튜브의 유체유발 불안정성 변화 (Flow-induced Instability of Multi-wall Carbon Nanotubes for Various Boundary Conditions)

  • 윤경재;송오섭
    • 한국소음진동공학회논문집
    • /
    • 제20권9호
    • /
    • pp.805-815
    • /
    • 2010
  • This paper studies the influence of internal moving fluid and flow-induced structural instability of multi-wall carbon nanotubes conveying fluid. Detailed results are demonstrated for the variation of natural frequencies with flow velocity, and the flow-induced divergence and flutter instability characteristics of multi-wall carbon nanotubes conveying fluid and modelled as a thin-walled beam are investigated. Effects of various boundary conditions, Van der Waals forces, and non-classical transverse shear and rotary inertia are incorporated in this study. The governing equations and three different boundary conditions are derived through Hamilton's principle. Numerical analysis is performed by using extended Galerkin's method which enables us to obtain more exact solutions compared with conventional Galerkin's method. This paper also presents the comparison between the characteristics of single-wall and multi-wall carbon nanotubes considering the effect of van der Waals forces. Variations of critical flow velocity for different boundary conditions of two-wall carbon nanotubes are investigated and pertinent conclusion is outlined.